Therapeutic Targeting of Endoplasmic Reticulum Stress in Inflammatory Bowel Disease

Indrajit Das
MSc (Hons) Clinical Biochemistry

School of Biomolecular and Physical Sciences
Science, Environment, Engineering and Technology

Griffith University

Submitted in fulfilment of the requirements of the degree of
Doctor of Philosophy
Abstract

Endoplasmic reticulum (ER) stress occurs when proteins misfold during biosynthesis in the ER. ER stress in intestinal secretory cells has been implicated in the aetiology of inflammatory bowel diseases (IBD) and intestinal inflammation in mice. Intestinal secretory cells are susceptible to ER stress due to high rates of protein synthesis, and ER stress in these cells results in reduced production of cell surface and secreted proteins leading to thinner mucus with a lower anti-microbial content, allowing penetration by luminal microbes, leading to inflammation. Cells experiencing ER stress attempt to restore homeostasis via the unfolded protein response (UPR), which enables the cells to increase the protein folding capacity of the ER.

The primary focus of this thesis is to examine whether the drugs that are efficacious in IBD treatment modulate goblet cell function and ER homeostasis, and whether drugs that modulate ER stress can suppress intestinal inflammation and restore intestinal homeostasis. In order to explore the ER stress-inflammation nexus I utilized well established IBD anti-inflammatory agents, 5-Aminosalicylate (5-ASA), 6-thioguanine (6-TG), the anti-TNF antibody, infliximab, and the glucocorticoid dexamethasone (DEX). Chemical chaperones (TUDCA and sodium 4-PBA) and UPR modulators (guanabenz, salubrinal and 4µ8C) were used to investigate how modulation of ER stress affects goblet cell function and intestinal inflammation. In vivo studies were carried out in Winnie mice, which have ER stress in goblet cells due to a Muc2 misfolding mutation resulting in colitis involving both innate and adaptive immunity. To understand the direct effect of these drugs on ER stress in goblet cells in the absence of confounding inflammatory factors, in vitro experiments were performed using the human colonic adenocarcinoma LS174T cell line, a cell line containing cells with goblet cell differentiation, where ER stress was induced either by inhibition of N-glycosylation by tunicamycin or by depletion of Ca^{2+} by thapsigargin.

Accumulation of terminally misfolded Muc2 precursor in Winnie mice increased clinical and histological inflammation and initiated the ER stress response with upregulation of all the arms of the UPR and decreased Muc2 biosynthesis. Therapeutic targeting with 5-ASA and 6-TG inhibited inflammation, restored
Muc2 biosynthesis and suppressed ER stress in Winnie mice. However, these drugs failed to modulate ER stress in LS174T cells suggesting that their role in modulating intestinal homeostasis and goblet cell functioning is secondary to their suppression of inflammation. Infliximab, failed to inhibit inflammation and ER stress both in vivo and in vitro, although these experiments may be influenced by the lower affinity of infliximab for murine TNF. Endogenous intestinal glucocorticoids are important for homeostasis and glucocorticoid drugs are efficacious in IBD. In Winnie the glucocorticoid dexamethasone (DEX) suppressed ER stress and activation of the UPR and inflammation, substantially restoring goblet cell production of Muc2. In cultured human intestinal secretory cells, in a glucocorticoid receptor-dependent manner, DEX suppressed multiple forms of ER stress and UPR activation induced by blocking N-glycosylation, reducing ER Ca\(^{2+}\) or depleting glucose. DEX upregulated mRNA expression of genes encoding chaperones and elements of ER associated degradation (ERAD), including EDEM1. siRNA knockdown of EDEM1 partially blocked the DEX suppression of misfolding-induced ER stress showing that DEX enhances ERAD. DEX inhibited tunicamycin-induced accumulation of MUC2 precursor and promoted production of mature mucin, and restored ER exit and secretion of Winnie mutant recombinant Muc2 domains, consistent with enhanced protein folding.

TUDCA and 4-PBA suppressed ER stress in LS174T cells but failed to inhibit ER stress or suppress inflammation in Winnie mice. Guanabenz, which selectively inhibits eIF2 dephosphorylation, partially ameliorated ER stress and restored mucin biosynthesis in Winnie mice, and inhibited ER stress in LS174T cells. Salubrinal, which blocks translation of proteins by inhibiting eIF2 dephosphorylation, also suppressed ER stress in LS174T cells. The IRE1-binding molecule, 4µ8C, selectively inhibited tunicamycin- and thapsigargin-induced XBP1 splicing in LS174T cells but failed to modulate other arms of the UPR. Therapeutic intervention with salubrinal and 4µ8C was not possible in Winnie mice due to their pleiotropic side effects.

The ER protein disulphide isomerase family member, AGR2, is tightly co-expressed with MUC2 in the intestine and deficiency in Agr2 in mice leads to cessation of Muc2 biosynthesis. In LS174T cells I demonstrated that ER stress and upregulation of mucin biosynthesis both increase AGR2 transcription, and
siRNA silencing of AGR2 induces ER stress, suggesting that AGR2 is critical for mucin folding and biosynthesis. I have also demonstrated that haplo-insufficiency of Agr2 by itself does not perturb intestinal homeostasis but enhances mucin misfolding and misfolding induced ER stress in vivo in mice carrying one Winnie mutant allele. Better understanding of the role of AGR2 will help in gaining insights in disease susceptibility.

Overall this thesis demonstrates that therapeutic inhibition of local intestinal inflammation suppresses ER stress and restores mucin biosynthesis in the intestinal goblet cells. I show that glucocorticoids are more efficacious than drugs which modulate just inflammation or ER stress by altering both pathways. Although components of ER stress pathways are important in maintaining homeostasis, my results indicate that therapeutic intervention with ER stress modulators will not be efficacious if inflammation is already established. Outcomes from my research will provide insights in determining the efficacy of therapeutic manipulation of the inflammatory-ER stress nexus in order to devise new strategies to alleviate or prevent IBD, and have wider ramifications for chronic inflammatory diseases involving ER stress.
Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

(Signed)_____________________________

Indrajit Das
Table of Contents

Abstract ... i
Statement of Originality .. iv
List of Figures .. xi
List of Tables ... xv
List of abbreviations ... xvi
Acknowledgement ... xix
List of Publications .. xxii

1 GENERAL INTRODUCTION .. 1

1.1 THE ENDOPLASMIC RETICULUM (ER) AND ITS FUNCTIONS ... 1

1.2 PROTEIN FOLDING IN THE ER AND ER QUALITY CONTROL ... 2

1.3 COMPONENTS OF ER QUALITY CONTROL (ERQC) ... 6

1.3.1 Protein disulphide isomerase (PDI) ... 6

1.3.1.1 Structure of PDI ... 6

1.3.1.2 Function of PDI .. 6

1.3.2 Molecular chaperones .. 8

1.3.2.1 Heat-shock proteins (HSPs) ... 8

1.3.2.1.1 Glucose-regulated protein 78 (GRP78)/ Binding immunoglobulin protein (BIP) 8

1.3.2.1.2 Glucose-regulated protein 94 (GRP94) .. 10

1.3.2.2 Lectin chaperones (calnexin and calreticulin) ... 10

1.3.2.3 Glucose-regulated protein 78 (GRP78)/ Binding immunoglobulin protein (BIP) 10

1.3.2.4 Glucose-regulated protein 94 (GRP94) .. 10

1.4 PROTEIN MISFOLDING AND ER STRESS .. 11

1.5 UNFOLDED PROTEIN RESPONSE (UPR) .. 11

1.5.1 Elements and pathways involved in UPR .. 11

1.5.1.1 Translation control during ER stress mediated via PERK ... 12

1.5.1.2 Transcriptional control during ER stress via IRE1 ... 13

1.5.1.3 Transcriptional control during ER stress via ATF6 pathway .. 14

1.6 CONSEQUENCES OF UPR ACTIVATION ... 16

1.6.1 Decreased translation ... 17

1.6.1.1 Regulated Ire1 dependent decay (RIDD) .. 17

1.6.2 Restoration of protein folding ... 18

1.6.3 ER-associated degradation (ERAD) .. 19

1.6.3.1 Substrate recognition .. 20

1.6.3.2 Substrate targeting ... 20

1.6.3.3 The retrotranslocation .. 21

1.6.3.4 Ubiquitination and proteasome degradation ... 21

1.7 INTERACTION OF THE UPR WITH OTHER PATHWAYS .. 22

1.7.1 Inflammation ... 23

1.7.2 Autophagy .. 25

1.7.3 Apoptosis .. 27

1.8 COMPONENTS OF THE INTESTINAL BARRIER ... 28
1.9 EPITHELIAL CELL BARRIER ... 28
 1.9.1 Stem cell differentiation and regulation of IEC maturation 30
 1.9.2 Secretory cells .. 31
 1.9.2.1 Goblet cells .. 31
 1.9.2.2 Paneth cells .. 32
 1.9.3 Enteroendocrine cells ... 32
1.10 INTESTINAL MUCUS BARRIER ... 32
 1.10.1 Mucin glycoproteins ... 34
 1.10.1.1 Secretory gel forming mucins .. 34
 1.10.1.2 Membrane bound mucins ... 34
 1.10.2 MUC2 glycoprotein .. 34
 1.10.2.1 MUC2 and its domain structure ... 34
 1.10.3 Biosynthesis of MUC2 glycoprotein ... 36
 1.10.4 Secretion of MUC2 ... 38
1.11 INFLAMMATORY BOWEL DISEASE (IBD) 38
 1.11.1 Incidence and prevalence .. 39
 1.11.2 Pathogenesis .. 40
 1.11.2.1 Genetics .. 40
 1.11.2.1.1 Nucleotide-binding oligomerization domain containing 2 (NOD2) .. 41
 1.11.2.1.2 Autophagy related 16 like 1 (ATG16L1) 41
 1.11.2.1.3 Immunity-related p47 guanosine triphosphatases (IRG) 41
 1.11.2.1.4 Interleukin-10 (IL-10) ... 42
 1.11.2.1.5 Extracellular matrix protein 1 (ECM1) 42
 1.11.2.1.6 HLA regions .. 42
 1.11.2.2 Host-microbiota balance and intestinal homeostasis 42
 1.11.2.3 Innate immune responses in IBD .. 44
 1.11.2.4 Adaptive immune responses in IBD ... 45
 1.11.2.5 Impaired goblet cell differentiation and a deficient mucus layer 46
 1.11.2.6 Environmental factors .. 47
1.12 ER STRESS AS A CONTRIBUTOR TO INTESTINAL INFLAMMATION 49
 1.12.1 Evidence from animal models .. 49
 1.12.2 Evidence from human IBD .. 52
1.13 IBD THERAPEUTICS .. 53
 1.13.1 Conventional IBD therapeutics – the anti-inflammatory agents 53
 1.13.2 Potential IBD therapeutic targets – the ER stress modulators, 54
2 RATIONALES AND AIMS .. 55
 2.1 Hypothesis 1 ... 56
 2.1.1 Aim 1a ... 56
 2.1.2 Aim 1b ... 56
 2.2 Hypothesis 2 ... 56
4.1 5-AMINOSALICYLATE (5-ASA) ... 70
 4.1.1 Metabolism of 5-ASA ... 71
 4.1.2 Mechanism of action of 5-ASA .. 71
 4.1.3 Associated side-effects of 5-ASA therapy ... 73

4.2 THIOPURINES (TPs) ... 73
 4.2.1 Metabolism of Thiopurines .. 74
 4.2.2 Mechanism of action of Thiopurines in IBD treatment 75
 4.2.3 Thiopurines in IBD treatment .. 77
 4.2.4 Associated side-effects of thiopurine therapy ... 77

4.3 ANTI-TNF AGENTS ... 78
 4.3.1 Mechanism of action of anti-TNFα agents/Infliximab in IBD treatment 78
 4.3.2 Associated side-effects of infliximab therapy ... 79

4.4 EFFICACY OF ANTI-INFLAMMATORY AGENTS (5-ASA, 6-TG AND INFlixIMAB)
FOR TREATING ER STRESS MEDIATED-COLITIS ... 81
 4.4.1 5-aminosalicylate (5-ASA) suppressed intestinal inflammation in Winnie mice 81
 4.4.2 5-aminosalicylate (5-ASA) restored goblet cell morphology and inhibited accumulation of Muc2 precursor in the ER of Winnie mice ... 83
 4.4.3 5-aminosalicylate (5-ASA) suppressed misfolding induced ER stress in the Winnie goblet cell 86
 4.4.4 5-aminosalicylate (5-ASA) did not ameliorate ER stress and mucin biosynthesis in vitro 88
 4.4.5 6-TG inhibited intestinal inflammation in Winnie mice in a dose dependent manner 90
 4.4.6 6-TG restored mucin biosynthesis and ameliorated ER stress in Winnie mice in a dose dependent manner ... 94
 4.4.7 6-TG suppressed intestinal inflammation in both Winnie and RaW mice 98
 4.4.8 6-TG suppresses ER stress and restores mucin biosynthesis in both Winnie and RaW mice 100
 4.4.9 6-TG did not suppress tunicamycin and thapsigargin induced ER stress/UPR activation in vitro in LS174T cells ... 103
 4.4.10 Intra-peritoneal administration of infliximab (anti-TNFα antibody) failed to diminish mucin misfolding-induced intestinal inflammation in Winnie ... 105
 4.4.11 Intra-peritoneal administration of the anti-TNFα antibody, infliximab, failed to restore Muc2 production in Winnie mice ... 107
 4.4.12 Intra-peritoneal administration of infliximab did not inhibit ER stress and failed to promote goblet cell related genes in Winnie mice ... 109

4.5 DISCUSSION .. 111

5 GLUCOCORTICOSTEROIDS .. 116
 5.1 SIDE EFFECTS ASSOCIATED WITH GLUCOCORTICOSTEROIDS 116
 5.2 MECHANISM OF ACTION OF GLUCOCORTICOSTEROIDS 117
5.3 GLUCOCORTICOID MODULATION OF ER STRESS IS INDEPENDENT OF NFκB

127

5.7 INHIBITION OF ER STRESS BY GLUCOCORTICOID MODULATION ON ENHANCED ERAD .. 128

5.8 GLUCOCORTICOIDS PROMOTE CORRECT FOLDING OF PROTEINS IN THE ER 131

5.9 DISCUSSION .. 136

6 ER STRESS MODULATORS .. 141

6.1 TAUROURSODEOXYCHOLIC ACID (TUDCA) AND SODIUM 4-PHENYLBUTYRATE (4-PBA) ... 141

6.1.1 Mechanism of action of TUDCA and 4-PBA .. 142

6.2 GUANABENZ AND SALUBRINAL .. 144

6.2.1 Mechanism of action of guanabenz and salubrinal .. 145

6.3 4-METHYL UMABELLERONE 8-CARBALDEHYDE (4µ8C) ... 147

6.3.1 Efficacy of ER stress inhibitors (TUDCA, 4-PBA, guanabenz, Salubrinal and 4µ8C) in ER stress-mediated inflammation and restoration of mucin biosynthesis .. 149

6.3.1.1 Intra-peritoneal administration of TUDCA partially suppressed intestinal inflammation in Winnie 149

6.3.1.2 Intra-peritoneal administration of TUDCA restored Muc2 production in Winnie 151

6.3.1.3 Intra-peritoneal administration of TUDCA failed to restore misfolding induced ER stress but partially promoted goblet cell related genes in Winnie mice. 153

6.3.1.4 Intra-gastric administration of TUDCA increased mucin misfolding induced ER stress and inflammation in Winnie mice in a dose dependent manner .. 155

6.3.1.5 TUDCA ameliorated ER stress and mucin biosynthesis induced by tunicamycin but not by thapsigargin in LS174T cells .. 157

6.3.1.6 The chemical chaperone sodium 4 PBA failed to inhibit intestinal inflammation in Winnie mice 159

6.3.1.7 The chemical chaperone sodium 4-PBA failed to restore goblet cell function in Winnie mice 161

6.3.1.8 The chemical chaperone sodium 4 PBA failed to inhibit intestinal inhibition in Winnie mice . 163

6.3.1.9 Sodium 4-PBA ameliorated ER stress and mucin biosynthesis in LS174T cells in vitro 165

6.3.1.10 Guanabenz could only partially suppress intestinal inflammation in Winnie mice 167

6.3.1.11 Guanabenz partially restored mucin biosynthesis in the proximal colon of Winnie but could not inhibit the accumulation of Muc2 precursor in the ER of Winnie goblet cells ... 169

6.3.1.12 Guanabenz partially restored ER stress only in the proximal colon of Winnie 172
List of Figures

Figure 1.1. ER quality control.______________________________ 4
Figure 1.2 Quality-control by the GRP78, the ADP–ATP-cycle_________ 9
Figure 1.3 Major pathways involved in the unfolded protein response (UPR) activated during ER stress_____________________________ 16
Figure 1.4. The calnexin-calreticulin folding cycle_________________________ 19
Figure 1.5. Mechanism for ER associated degradation (ERAD)___________ 22
Figure 1.6 Diagram showing the thickness of the inner and outer mucus layer in the small and large intestine____________________________________ 33
Figure 1.7 The domain structure of the MUC2 mucin_______________________ 35
Figure 1.8. Biosynthesis of MUC2 glycoprotein___________________________ 37
Figure 1.9 Domains of Muc2 protein in Winnie____________________________ 49
Figure 1.10 Murine models of defective protein folding, UPR, and autophagy that link ER stress related pathways with intestinal inflammation_______ 51
Figure 3.1 Measurement of mature mucin biosynthesis. ________________ 68
Figure 4.1. Mechanism of action of 5-ASA______________________________ 73
Figure 4.2 Thiopurine metabolism_______________________________________ 75
Figure 4.3 Mechanism of action of Thiopurines____________________________ 76
Figure 4.4 Mechanisms of action of Infliximab____________________________ 80
Figure 4.5 5-ASA supressed intestinal inflammation in Winnie mice_______ 83
Figure 4.6. 5-ASA restored MUC2 mucin biosynthesis in intestinal goblet cells of Winnie mice___ 85
Figure 4.7 5-ASA reduced ER stress and activation of the UPR in Winnie mice 87
Figure 4.8 5-ASA did not ameliorate tunicamycin (Tm) and thapsigargin (Tg) induced ER stress and up-regulation of the UPR and mucin biosynthesis specific genes in colonic LS174T cells ___________________________ 89
Figure 4.9 6-TG supressed intestinal inflammation in Winnie mice in a dose dependent manner_______________________________________ 91
Figure 4.10 6-TG ameliorated colitis and inhibited inflammatory cytokines in Winnie mice in a dose dependent manner____________________ 92
Figure 4.11 6-TG restored Muc2 mucin biosynthesis in a dose dependent manner, in intestinal goblet cells of *Winnie* mice

Figure 4.12 6-TG inhibited ER stress and activation of the UPR and restored expression of goblet cell specific genes in *Winnie* mice, in a dose dependent manner

Figure 4.13 6-TG supressed intestinal inflammation in *Winnie* and *RaW* mice

Figure 4.14 6-TG restored MUC2 mucin biosynthesis in intestinal goblet cells of *Winnie* and *RaW* mice

Figure 4.15 6-TG reduced ER stress and activation of the UPR and restored goblet cell specific genes in *Winnie* and *RaW* mice

Figure 4.16 6-TG could not ameliorate tunicamycin (Tm) and thapsigargin (Tg) induced regulation of the UPR and goblet specific genes in colonic LS174T cells

Figure 4.17 Infliximab did not supress intestinal inflammation in *Winnie* mice

Figure 4.18 Infliximab did not restore Muc2 mucin biosynthesis in intestinal goblet cells of *Winnie* mice

Figure 4.19 Infliximab did not ameliorate ER stress and was unable to inhibit the activation of the UPR in *Winnie* mice

Figure 5.1 Anti-inflammatory mechanisms of glucocorticoids

Figure 5.2 Glucocorticoids restore mucin biosynthesis in intestinal goblet cells with a mucin folding defect

Figure 5.3 Glucocorticoids reduce ER stress and activation of the UPR and restore goblet cell gene expression in *Winnie* mice

Figure 5.4 Glucocorticoids suppress intestinal inflammation in *Winnie* mice

Figure 5.5 Glucocorticoids abrogate the tunicamycin (Tm) induced activation of the UPR in human colonic LS174T cells

Figure 5.6 Glucocorticoid inhibition of ER stress is independent of suppression of NFκB

Figure 5.7 Glucocorticoids increase expression of proteins involved in ER associated degradation (ERAD) contributing to the inhibition of ER stress

Figure 5.8 Glucocorticoids ameliorate ER stress by enhancing correct folding and secretion of proteins
Figure 5.9 Glucocorticoids inhibit the ER stress induced by chelation of Ca$^{2+}$ and ATP depletion

Figure 5.10 Schematic representation of the mechanism of action by which glucocorticoids inhibit ER stress and secretory cell functioning

Figure 6.1 Possible mechanism of action of TUDCA and 4-PBA

Figure 6.2 Mechanism of action of guanabenz and salubrinal

Figure 6.3 Mechanism of action of 4µgC. 4µgC selectively inhibits XBP1 splicing mediated by IRE1 by binding to the active sites of IRE

Figure 6.4. Intra-peritoneal administration of TUDCA partially restored intestinal inflammation in *Winnie* mice

Figure 6.5 TUDCA partially restored Muc2 mucin folding and biosynthesis in intestinal goblet cells of *Winnie* mice

Figure 6.6. TUDCA partially reduced ER stress and activation of the UPR and also minimally restored gene expression of goblet cell markers in *Winnie* mice

Figure 6.7 Intra-gastric administration of TUDCA increased intestinal inflammation and ER stress in *Winnie* mice

Figure 6.8. TUDCA inhibited tunicamycin (Tm) but not thapsigargin (Tg) induced UPR activation and suppression of goblet cell specific genes in colonic LS174T cells

Figure 6.9 Sodium 4-PBA did not suppress intestinal inflammation in *Winnie* mice

Figure 6.10 4 PBA failed to restore MUC2 mucin biosynthesis in intestinal goblet cell of *Winnie* mice with mucin folding defect due to SNP in the Muc2 gene

Figure 6.11. 4 PBA did not reduce ER stress and activation of the UPR and failed to restore gene expression of goblet cell markers in *Winnie* mice

Figure 6.12. 4 PBA inhibited tunicamycin (Tm) and thapsigargin (Tg) induced UPR activation and restore expression of goblet cell specific genes in colonic LS174T cells

Figure 6.13. GBZ did not suppress intestinal inflammation in *Winnie* mice

Figure 6.14 GBZ failed to restore MUC2 mucin biosynthesis in intestinal goblet cell of *Winnie* mice with mucin folding defect due to SNP in the Muc2 gene.
Figure 6.15. GBZ did not reduce ER stress and activation of the UPR and could not restore gene expression of goblet cell markers in *Winnie* mice 174

Figure 6.16 GBZ inhibited tunicamycin (Tm) and thapsigargin (Tg) induced up-regulation of the UPR and goblet cell specific genes in colonic LS174T cells in a dose dependent manner 176

Figure 6.17 Salubrinal partially inhibited tunicamycin (Tm) but failed to restore thapsigargin (Tg) induced UPR activation and expression of goblet cell specific genes in colonic LS174T cells at the highest dose (125 μM) 178

Figure 6.18 4µ8C inhibited tunicamycin (Tm) and thapsigargin (Tg) induced Ire1 mediated Xbp1 splicing but could not ameliorate UPR activation and restored expression of goblet cell specific genes in colonic LS174T cells 180

Figure 7.1. Mechanism of action of AGR2 188

Figure 7.2. Agr2 is upregulated during mucin biosynthesis and also during induction of the UPR in human colonic LS174T cells 190

Figure 7.3 Deficiency of AGR2 increases ER stress and contributes to downregulation of genes involved in mucin biosynthesis and ERAD 192

Figure 7.4 Haplo-insufficiency of Agr2 increases intestinal inflammation in mice carrying a single *Winnie* mutant allele 195

Figure 7.5 Haplo-insufficiency of Agr2 decreases mucin biosynthesis and increases accumulation of Muc2 precursor in heterozygous *Winnie* mice 199

Figure 7.6 Haplo-insufficiency of Agr2 elevates ER stress in mice carrying a single *Winnie* mutant allele 200

Figure 8.1 The Cycle of ER stress and inflammation 204
List of Tables

Table 1.1 ER resident molecular chaperones, foldases and lectins, [adapted from Schroder and Kaufman (2005)] ..5
Table 1.2 The human family of protein disulphide Isomerase proteins ...7
Table 3.1 Oligonucleotide primers sequences used for quantification of human gene expression by real time PCR ..64
Table 3.2 Oligonucleotide primers sequences used for quantification of murine gene expression by real time PCR ..65
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-PBA</td>
<td>4-phenylbutyric acid</td>
</tr>
<tr>
<td>AMPK</td>
<td>5/-AMP-activated protein kinase</td>
</tr>
<tr>
<td>5-ASA</td>
<td>5-Aminosalicylate</td>
</tr>
<tr>
<td>6-MMP</td>
<td>6-methylmercaptopurine;</td>
</tr>
<tr>
<td>6-TGMP</td>
<td>6-Thioguanine monophosphate,</td>
</tr>
<tr>
<td>6-TGN</td>
<td>6-Thioguanine nucleotides</td>
</tr>
<tr>
<td>6-TGTP</td>
<td>6-Thioguanine triphosphate,</td>
</tr>
<tr>
<td>6-TG</td>
<td>6-thioguanine;</td>
</tr>
<tr>
<td>6-TGDP</td>
<td>6-Thioguanine diphosphate,</td>
</tr>
<tr>
<td>6-TUA</td>
<td>6-Thiouric acid;</td>
</tr>
<tr>
<td>ATF 3,4,6</td>
<td>Activating transcription factor 3,4,6</td>
</tr>
<tr>
<td>AGR2</td>
<td>Anterior gradient 2</td>
</tr>
<tr>
<td>ADCC</td>
<td>antibody-dependent cell-mediated cytotoxicity</td>
</tr>
<tr>
<td>APC</td>
<td>Antigen presenting cells</td>
</tr>
<tr>
<td>ASK1</td>
<td>Apoptosis-signalling kinase 1</td>
</tr>
<tr>
<td>ATG16L1</td>
<td>Autophagy-related 16-like 1</td>
</tr>
<tr>
<td>AZA</td>
<td>Azathioprine</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B cell lymphoma Bcl-2</td>
</tr>
<tr>
<td>bFGF</td>
<td>Basic fibroblast growth factor (bFGF)</td>
</tr>
<tr>
<td>BAX</td>
<td>Bcl-2-associated X protein</td>
</tr>
<tr>
<td>Blimp-1</td>
<td>B-lymphocyte-induced maturation protein 1</td>
</tr>
<tr>
<td>CaMKKβ</td>
<td>Calcium-activated calmodulin dependent kinase kinase-β</td>
</tr>
<tr>
<td>C/EBP β</td>
<td>Ccaat-enhancer binding protein β</td>
</tr>
<tr>
<td>CXCL1</td>
<td>Chemokine (C-X-C motif) ligand1</td>
</tr>
<tr>
<td>DRIP</td>
<td>co-activator vitamin D3 receptor interacting protein</td>
</tr>
<tr>
<td>CDC</td>
<td>Complement-dependent cytotoxicity</td>
</tr>
<tr>
<td>CD</td>
<td>Crohn’s disease</td>
</tr>
<tr>
<td>CREB-H</td>
<td>cyclic-AMP-responsive-element-binding protein H</td>
</tr>
<tr>
<td>CHX</td>
<td>Cyclohexamide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>DEX</td>
<td>Dexamethasone</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-Associated protein with Death Domain</td>
</tr>
<tr>
<td>GLP-1R</td>
<td>Glucagon-like peptide 1 receptor</td>
</tr>
<tr>
<td>Gro</td>
<td>Growth regulated oncogene</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and eosin</td>
</tr>
<tr>
<td>HPRT</td>
<td>Hypoxanthine phosphoribosyltransferase</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IEC</td>
<td>Intestinal epithelial cells</td>
</tr>
<tr>
<td>IRGM</td>
<td>IRG protein control intracellular pathogens</td>
</tr>
<tr>
<td>JIK</td>
<td>c-Jun-N-terminal inhibitory kinase</td>
</tr>
<tr>
<td>MAPKKK</td>
<td>Mitogen-activated protein kinase kinase kinase</td>
</tr>
<tr>
<td>mTOR</td>
<td>Mammalian target of rapamycin</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte chemotactic peptide</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activated protein kinase</td>
</tr>
<tr>
<td>NO</td>
<td>Nitrogen oxide</td>
</tr>
<tr>
<td>NOD2</td>
<td>Nucleotide-binding oligomerization domain-containing protein 2</td>
</tr>
<tr>
<td>NLR</td>
<td>NOD-like receptors</td>
</tr>
<tr>
<td>ENU</td>
<td>N-ethyl-N-nitrosourea</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome proliferator-activated receptors</td>
</tr>
<tr>
<td>PPRE</td>
<td>PPARγ response element</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PAS</td>
<td>Periodic Acid Schiff’s staining</td>
</tr>
<tr>
<td>RAC1</td>
<td>Ras-related C3 botulinum toxin substrate 1</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RANTES</td>
<td>Regulated upon Activation, Normal T-cell Expressed, and Secreted</td>
</tr>
<tr>
<td>Abbr</td>
<td>Full Name</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>RXR</td>
<td>Retinoid X receptor</td>
</tr>
<tr>
<td>SPDEF</td>
<td>SAM pointed domain containing Ets transcription factor</td>
</tr>
<tr>
<td>STAT3, 4</td>
<td>Signal transducer and activator of transcription 3,4</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>TUDCA</td>
<td>Taurine-conjugated ursodeoxycholic acid</td>
</tr>
<tr>
<td>Tg</td>
<td>Thapsigargine</td>
</tr>
<tr>
<td>TPMT</td>
<td>Thiopurine-S-methyltransferase</td>
</tr>
<tr>
<td>TLR2</td>
<td>Toll like receptor 2</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>TNBS</td>
<td>Trinitrobenzene sulfonic acid</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TL1A</td>
<td>Tumour necrosis factor–like ligand 1</td>
</tr>
<tr>
<td>TRAIL 1</td>
<td>Tumour necrosis factor-related apoptosis-inducing ligand</td>
</tr>
<tr>
<td>TNFRS7</td>
<td>Tumour necrosis factor receptor superfamily member 7</td>
</tr>
<tr>
<td>TACE</td>
<td>TNFα converting enzyme</td>
</tr>
<tr>
<td>TNFR 1,2</td>
<td>TNF receptor type 1,2</td>
</tr>
<tr>
<td>TRADD</td>
<td>TNFR1–associated death domain</td>
</tr>
<tr>
<td>Tm</td>
<td>Tunicamycin</td>
</tr>
<tr>
<td>UC</td>
<td>Ulcerative colitis</td>
</tr>
<tr>
<td>vWf</td>
<td>von Willebrand factor</td>
</tr>
<tr>
<td>XO</td>
<td>Xanthine oxidase</td>
</tr>
</tbody>
</table>
Acknowledgement

In one way this PhD work is a testimony for my love of science and in many more ways it reflects the support and mentorship from numerous outstanding individuals. My heartfelt gratitude and thanks go out to these people, for their constant support in this long but fulfilling road.

This journey of completion of my PhD dissertation could not be accomplished without the support and guidance of my incredible supervisors. Therefore, first and foremost my sincere gratitude goes to my supervisors: Prof Michael McGuckin, Prof Timothy Florin, Prof Denis Crane, and Dr Rajaraman Eri.

I thank Prof Michael McGuckin from the bottom of my heart for his guidance, understanding, support and most importantly patience to put up with me. He has encouraged me to not only grow as an experimentalist and but also as a critical thinker. Mike you are a great scientist, mentor, and above all an amazing and inspirational teacher. My sincere thanks to Prof Timothy Florin for scientific advice, knowledge and many insightful discussions. Tim you have been invaluable on both an academic and a personal level, for which I am extremely grateful. My sincere gratitude is reserved for Prof Denis Crane for his invaluable insights and suggestions. I really appreciate his willingness to meet me at short notice every time and going through several drafts of my thesis, despite his busy schedule. Heartfelt thanks go to Dr Rajaraman Eri for his support and for providing me numerous opportunities to learn and develop.

I have had an exceptional opportunity to work alongside a bunch of kind, encouraging, supportive and friendly people and so I am thankful to all the past and present memebrs of the ‘Immunity Infection and Inflammation’ group. I thank Dr Chin Wen Png, for always providing helpful suggestions and help with instrumentation and general lab questions; Dr Iulia Oancea, for her passionate and enthusiastic nature; Dr Sumaira Hasnain, for her intellectual input, banters in the lab, for addicting me to coffee and always encouraging me to be focussed; Dr Kirsten Gerloff, for her constant encouragement; Ms Alice Chen and Ms Ran Wang, my two little sisters, for constant support and positive upliftments; Dr Rohan Lourie, for his witty nature and mostly for standing by my side as the only other male member of the lab. I thank Dr Yong Sheng for her guidance (and the best cheesecake I have ever tasted), and Dr Penny Jeffery for
scientific advice. I will never forget our many wonderful lunches and fun activities together. You guys have become my support system who have made it possible to survive and stay sane in this hard journey. I will forever be grateful for having supportive and caring friends like you in my life.

I thank Ms Thu Tran and Ms Rachel Adams, for their technical assistance with the experiments and Ms Debbie Roche for teaching me animal handling skills. Special thanks to Dr Martina Proctor and Ms Hui (Wendy) Tong, for their utmost help during these last couple of months.

I want to express my sincere gratitude to the wonderful IT team, especially Mr Norbert Konecki, for the support and assistance with all the IT related issues. Without your support in the last couple of months it would be impossible for me to manage the data. Special thanks to Ms Ann Burns Hutchison, Ms Jennifer Thomson, Ms Caron Maxim, and Ms Kylie Vandenbarg, for their excellent work with taking care of the Animal facility, Mr Philip Mathews and Ms Tess Mackie, in the Scientific support team for their help, Mr Paul Turley and Ms Maree Knight for nagging me to adhere to the laboratory protocols and keeping me out of trouble.

I would like to acknowledge the financial and academic support of the Griffith University, particularly in the award the scholarships – ‘Griffith University International Postgraduate Research Scholarships (GUPRS)’ and ‘Griffith University Postgraduate Research Scholarship (GUPRS)’ that provided the necessary financial support for this research.

I also thank my dad Mr Kashi Nath Das, mum Mrs Mukul Rani Das and little sister Ms Indrani Das for their unconditional love, blessings, support and understanding. Being away from you guys has not been easy for me. Thanks for always keeping me in your thoughts and prayers. My sincere gratitude goes to my mum for always listening to my whining and never complaining.

Finally, I would like to acknowledge the most important person in my life – my fiancée Smita, who has been a constant source of strength and inspiration. Thank you for putting up with my ‘psychotic’ mood-swings. Without your unconditional love and support this journey would not be possible. Thank you for sticking by my side, even when I was irritable and depressed. I appreciate everything you have done for me and all the sacrifices you have made for me.
You are my soul-mate and there are no words to convey how much I love you. It is only for your determination, constant encouragement, and sometimes a kick on my backside when I needed one, that ultimately made it possible for me to see this project through to the end.

For any errors or inadequacies that may remain in this work, of course, the responsibility is entirely my own.
List of Publications

Published manuscripts

Manuscripts under review/revision

Manuscripts under preparation

1. Das I, Hasnain S Z, Oancea I, Chen A, Florin T H and McGuckin M A. **Therapeutic effect of anti-inflammatory drugs and ER stress modulators on protein misfolding induced ER stress and inflammation.** (Targeted journal *Journal of Inflammation*).

