Assessing and Reducing Risk Due to Chlorpyrifos Use among Rice Farmers in Vietnam: From Probabilistic Risk Assessment to Safety Strategy Development

Dung Tri Phung
General Medical Practitioner, Hanoi Medical University, Vietnam
Masters of Public Health in Occupational and Environmental Medicine, University of Washington, USA

Submitted in fulfillment of the requirement of the degree of
Doctor of Philosophy

Griffith School of Environment in Science, Environment, Engineering and Technology
Griffith University
Queensland, Australia

June 2012
ABSTRACT

Vietnamese farmers are at high risk of pesticide exposure due to usage of pack-back sprays for application of pesticides with their rice crops. Chlorpyrifos has been the most common organophosphate registered for agricultural use in Vietnam, however the health risk due to the use of this compound by rice farmers has not been evaluated. The primary objective of this study was to evaluate the health risk of chlorpyrifos exposure to rice farmers, using a probabilistic approach, with a secondary objective of developing safety strategies for pesticide risk reduction, using qualitative needs assessment methods used for evaluating health promotion programs.

Farmer exposure to chlorpyrifos from pesticide application was measured by biological monitoring. Urine samples were collected from farmers (18) over pesticide spraying application time and analysed for 3,5,6-trichloropyridinol (TCP), the major urinary metabolite of chlorpyrifos, using an enzymatic pre-treatment before extraction followed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). Absorbed Daily Doses (ADD) of chlorpyrifos for farmers was then estimated from urinary TCP levels, expressed as µg/g creatinine. The exposure doses, comprising baseline exposure dose (ADD_B), post-application exposure dose (ADD_A), and lifetime average daily exposure dose (LADD_E) were calculated. The baseline exposure dose (ADD_B) ranged from 0.03 to 1.98 µg/kg/d with a mean of 0.24 µg/kg/d. The post-application exposure dose (ADD_A) ranged from 0.35 to 94 µg/kg/d with a mean of 19.4 µg/kg/d which is approximately 80 times higher than the mean values of ADD_B (0.24 µg/kg/d). The lifetime average daily dose (LADD_E) ranged from 0.01 to 1.7 µg/kg/d with a mean of 0.3 µg/kg/d. Multivariate regression analysis indicated that personal protective equipment reflected by percentage of body coverage, amount of chlorpyrifos used and length of application made major contributions to ADD_A. However, the best regression model for the relationship between ADD_A and exposure factors was observed with two independent variables comprising body coverage and amount of chlorpyrifos used.

Dose-response relationships for chlorpyrifos was evaluated from the scientific literature, comprising acute and chronic exposures associated with specific adverse health effects observed from human epidemiological studies, as well as studies on surrogate animals. The doses obtained from epidemiological studies on human populations, which showed adverse health effects, were converted to the Absorbed Daily Dose (ADD_D), acute neurological effect Absorbed Daily Dose (ADD_DN) and
Lifetime Average Daily Dose (LADD_D). The animal doses were converted to the Human Equivalent Dose (HED) for both acute (HED_A) and chronic dose (HED_C). The level of Absorbed Daily Dose corresponding to neurological effects (ADD_DN) observed from epidemiological studies with human populations ranged from 5 to 181 µg/kg/d, and a low level of ADD_D was seen to be associated with developmental and reproductive effects (0.5-1.6 µg/kg/d). The Lifetime Average Daily Doses corresponding to adverse health effects (LADD_D) ranged from 0.3 to 6.2 µg. The acute Human Equivalent Dose (HED_A) observed with rats for neurological effects varied widely from 4,900 to 162,000 µg/kg while HED_A observed with mutagenicity were from 730 to 3,400 µg/kg.

Health risk of chlorpyrifos for participant farmers was characterized using probabilistic techniques by several methods: (i) the Hazard Quotients (HQ_{95/guideline}) estimated using guidelines of chlorpyrifos exposure recommended by national and international agencies; (ii) the Hazard Quotients (HQ_{95/5}) estimated using the high exposure dose (the 95th percentile) and low dose (the 5th percentile) corresponding to the sensitive group exhibiting adverse health effects; (iii) the Risk Quotient distribution that is the ratio between exposure doses and doses corresponding to biological adverse effects using Monte Carlo Simulation (MCS); and (iv) the Overall Risk Probability (ORP) method. The limitations and differences in interpreting the risk derived from each method are discussed in this study.

The evaluation of chronic exposure was carried out with the Hazard Quotients (HQ_{95/guideline} and HQ_{95/5}), quantified as the ratios between baseline exposure (ADD_B), lifetime exposure (LADD_E) and chronic guidelines, which were exceeded unity when using the chronic guideline recommended by US EPA but were below unity when using chronic guidelines recommended from other national and international agencies. Whereas, the evaluation of acute exposure with HQ_{95/guideline} and HQ_{95/5}, quantified as the ratio between the ADD_A and acute guidelines, were all over unity. Similar results were found with the HQ_{95/5} method. The risk estimated using MCS for ADD_A was at the 33%, but the risk estimated using MCS for ADD_B and LADD_E were effectively zero. The ORP method evaluated the level of risk at 0.6% for ADD_B, 1.5% for LADD_E, and 29% for ADD_A.

Several qualitative methods were involved in the needs assessment for risk reduction. A comparative analysis of pesticide regulation in USA and Vietnam was conducted to identify comparative needs for improving pesticide regulations in Vietnam. In-depth interviews with authorities and experts in authorized agencies were
used to identify normative needs for improving pesticide regulations and safety practices. Observations on pesticide practices of farmers were used to identify expressed needs for pesticide occupational safety, and focus group discussions with three groups of farmers were conducted to identify felt needs for pesticide safety measures from farmers. All identified needs were finally evaluated by the hierarchy of control measures applied for occupational safety and health.

The needs for improving pesticide safety management legislation obtained from the comparative and normative needs assessment include: enhancement of pesticide legislation; multi-sectoral involvement in, and improvement of capacity for, pesticide regulations; risk-benefit guidance for pesticide registration; reforms of pesticide regulations on restriction, cancellation, suspension, transport, storage and disposal of pesticides; development of occupational hygiene and safety policy and programs for agricultural activities. The expressed needs based on actual observations of the pesticide practices of farmers comprise: improvement of knowledge and behaviour of farmers on pesticide safety, focusing on some specific safety activities such as mixing and loading, and spraying pesticides, etc.; and support for better safety facilities and supply of personal protective equipment. The farmers also expressed felt needs on technical training for occupational safety and hygiene of pesticide application, and supporting safety facilities and protective equipment.

This study shows that dose-response data derived from epidemiological studies are more appropriate for conducting risk assessment and establishing occupational exposure guidelines, since the data is derived from actual human populations. Vietnamese farmers have a relatively small risk of adverse health effects resulting from baseline or lifetime daily dose of chlorpyrifos. However they are at high risk of acute adverse health effects after a single event of chlorpyrifos application by spraying. The probability of having acute neurological effects among farmers is from 29% to 33%. Health risk assessment of chlorpyrifos using the Monte Carlo Simulation (MCS) and the ORP method have significant advantages over other methods in dealing with variability and uncertainty of risk characterization, since MCS and ORP methods used whole sets of data from both exposure and dose-response in quantifying risk. The ORP method, using epidemiological dose-response data, is likely to be more sensitive than the MCS method for risk estimation with low doses of pesticide exposure.

Overall, the health risk assessment in this study strongly indicates that many Vietnamese rice farmers are likely to be exposed and have adverse health effects, predominately neurological effects, from chlorpyrifos application events. For risk
management, the results of comprehensive needs assessment found a wide range of needs to improve occupational health and safety in pesticide use. These were dominated by legislative improvement, health risk assessment practices, workplace protection and personal hygiene, safety information and training, and first aid training for pesticide risk reduction among Vietnamese farmers. Recommendations to significantly or greatly reduce pesticide risks are presented.
STATEMENT OF ORIGINALITY

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by other person except where due reference is made in the thesis itself.

Dung Tri Phung

2012
ACKNOWLEDGEMENT

I wish to express my deepest appreciation to several people for my completion of my PhD program at Griffith University. First, I would like to express my sincere gratitude to my supervisors, Professor Cordia Ming-Yeuk Chu, Emeritus Professor Des W. Connell, and Dr. Greg Miller for their kind support, guidance and advice throughout my research project. In addition, their whole-hearted patience, treatment, hospitality, and encouragement throughout the period of my stay in Australia played a crucial role in helping me to approach the modern sciences and made my life in Australia more progressive and comfortable.

I greatly appreciate Australian Government selecting and providing me the Endeavour Post Graduate Award grant to my PhD program health. I also want to acknowledge the kind assistance of the grant Case Manager, Mrs. Anthea Rothe throughout my award program.

I would like to forward special thanks to my colleagues at the Administration of Preventive Medicine and Environment, especially Professor Nguyen Huy Nga for supporting me to do my PhD program in Australia, and highly appreciations to colleagues at Thai Binh local medical centers for kind assistance to my research fieldwork. I also would like to express my special thanks to colleagues at Organic Lab, Queensland Health Forensic and Scientific Service, especially Mrs. Mary Hodge, Mrs. Renu Patel, Mrs. Manel Abeyewardene for instruction and assistance to my analytical work of my research samples at the laboratory.

I emotionally express special thanks and appreciation to my beloved wife, Mrs. Ha Nguyen, my lovely son, Van Phung and my adorable daughter, Khue Phung for their patience, sacrifice, and morale support to my PhD work. Respectful thanks to my parents, Bich Phung and Suu Tran, my wife’s parent, Thuan Dinh and Luu Trinh for their warm encouragement and unconditional support to my family care and PhD work. I also want to thank to my beloved brothers and sisters in my families for their encouragement and good wishes to my work.

I gratefully express my special thanks to staffs and friends who are master and PhD students at CEPH for their kindly supporting and sharing knowledge, happiness and sadness during my stay and study at CEPH, Griffith University.
The following paper have been published or submitted based on work in this thesis

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>ABSTRACT</th>
<th>STATEMENT OF ORIGINALITY</th>
<th>ACKNOWLEDGEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>CHAPTER 1 INTRODUCTION</td>
<td></td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 2 LITERATURE REVIEWS ON USE AND HEALTH EFFECTS OF PESTICIDES

2.1 Background

2.2 Rice Cultivation

2.2.1 Rice cultivation in the world

2.2.2 Rice cultivation in Vietnam

2.3 Application of pesticide in rice crops

2.3.1 Application of pesticide in rice crops in developing countries

2.3.2 Application of pesticide in rice crops in Vietnam

2.4 Organophosphate Insecticides

2.4.1 Background

2.4.2 Physical, chemical and environmental properties of organophosphate insecticides

2.4.3 Toxicity of organophosphate insecticide

2.4.4 Animal studies in health effects of organophosphate insecticides

2.4.5 Epidemiological studies in health effects of organophosphate insecticides

2.4.6 Chlorpyrifos

2.5 Studies in health effects of pesticides with farmers in Vietnam

2.6 Health risk assessment

2.6.1 Definition of risk and risk assessment

2.6.2 Framework of Health Risk Assessment

2.6.3 Health Risk Assessment using probabilistic techniques
2.7 Pesticide regulation and safety ...59
 2.7.1 Pesticide regulation and safety worldwide ..59
 2.7.1 Pesticide regulation and safety in Vietnam63

CHAPTER 3 RATIONALE, RESEARCH AIM AND OBJECTIVES 66
CHAPTER 4 METHODOLOGY ..67

4.1 Background ..67
4.2 Conceptual research framework ..67

4.3 Exposure assessment ..71
 4.3.1 Procedure for sampling human urine ..71
 4.3.2 Analysis of TCP in Urine ..80
 4.3.3 Urinary Creatinine Analysis ...88
 4.3.4 Estimation of Chlorpyrifos Absorbed Daily Dose (ADD_{B} and
 ADD_{A}) ..89
 4.3.5 Estimation of Chlorpyrifos Lifetime Average Daily Dose (LADD_{E}) ..94

4.4 Dose-response assessment ...95
 4.4.1 Principle of assessment ...95
 4.4.2 Data collection ...95
 4.4.3 Calculation of doses for Human Equivalent Dose, Absorbed Daily
 Dose, and Lifetime Average Daily Dose ..95
 4.4.4 Probabilistic dose-response assessment of chlorpyrifos97

4.5 Risk characterization ...98
 4.5.1 Principles of risk characterization ..98
 4.5.2 Risk characterization using guidelines ..98
 4.5.3 Risk characterization using Hazard Quotient at the 95th exposure dose
 and the 5th dose-response (HQ_{95/5}) ...99
 Similar to the interpretation of HQ above, a HQ_{95/5} value above than unity
 indicates that farmers at the high exposure group probably have
 adverse health effects caused by chlorpyrifos exposure100
 4.5.4 Risk characterization using Monte Carlo Simulations100
 4.5.5 Risk characterization using Overall Risk Probability (ORP)101

4.6 Qualitative needs assessment ..102
 4.6.1 Principle of method ..102
 4.6.2 Research area and participants ...103
 4.6.3 Data collection ..103
 4.6.4 Data analysis ...105
CHAPTER 5 HAZARD IDENTIFICATION ... 108
5.1 Background ... 108
5.2 Chlorpyrifos Formulations Used in Vietnam 108
5.3 Chemical and Environmental Properties of Chlorpyrifos 111
5.4 Human health effects of organophosphate insecticides in Vietnam 112
CHAPTER 6 RESULTS OF TCP AND CREATININE ANALYSIS . 114
6.1 Background ... 114
6.2 Levels of creatinine in urine of rice farmers 115
6.3 Levels of TCP found in urine of Vietnamese rice farmers 120
CHAPTER 7 EXPOSURE ASSESSMENT WITH CHLORPYRIFOS USAGE BY VIETNAMESE RICE FARMERS 127
7.1 Background ... 127
7.2 Characteristics and rice cultivation of the study participants 129
 7.2.1 Personal details of participant farmers 129
 7.2.2 Rice cultivation and pesticide application practices 129
7.3 Chlorpyrifos exposure levels with participant farmers 133
 7.3.1 Routes of exposure .. 133
 7.3.2 Baseline exposure levels of chlorpyrifos with participant farmers (ADD_B) ... 136
 7.3.3 Post-application exposure levels of chlorpyrifos with rice farmers (ADD_A) ... 139
 7.3.4 Total exposure levels of chlorpyrifos with rice farmers (ADD_T) 151
 7.3.5 Lifetime Average Daily Dose (LADD) 153
 7.3.6 Calculated exposure of rice farmers through different pathways..... 154
7.4 Conclusions ... 159
CHAPTER 8 DOSE-RESPONSE RELATIONSHIP OF CHLORPYRIFOS BASED ON HUMAN AND ANIMAL DATA 161
8.1 Background ... 161
8.2 Dose-response relationships of chlorpyrifos from experimental animal studies ... 164
 8.2.1 Acute lethality doses from experimental animal studies 164
 8.2.2 Neurotoxicity doses from experimental animal studies with mammals ... 165
 8.2.3 Non-neurological toxicity doses from experimental animal studies . 167
8.3 Dose-response relationship from epidemiological studies with human populations .. 170
8.3.1 Neurotoxicity...170
8.3.2 Non-neurological organ system toxicity............................174

8.4 The Dose-response relationship of chlorpyrifos evaluated using probabilistic techniques ...179
8.5 Chlorpyrifos Guidelines for Exposure..183
 8.5.1 Chlorpyrifos acute guidelines..183
 8.5.2 Chlorpyrifos chronic guidelines185
 8.5.3 Comparison of guidelines with dose-response relationship from the current studies...188
 8.5.4 Suggested guidelines ..191

8.6 Conclusions ..193

CHAPTER 9 RISK CHARACTERIZATION WITH USAGE OF CHLORPYRIFOS BY VIETNAMESE FARMERS.............. 195

9.1 Background ...195
9.2 Data sources for risk characterization..198
9.3 Risk characterization using probabilistic techniques 198
 9.3.1 Probabilistic risk characterization using guidelines 198
 9.3.2 Probabilistic risk characterization using dose-response data ...202
 9.3.3 Estimation of safety ratio (SR)212

9.4 Conclusion ...213

CHAPTER 10 EVALUATION OF NEEDS FOR PESTICIDE RISK REDUCTION MEASURES.. 214

10.1 Background ..214
10.2 Comparative needs for pesticide regulations217
 10.2.1 Legislative basis for pesticide regulations217
 10.2.2 Pesticide registration..218
 10.2.3 Suspension and cancellation of pesticide registration219
 10.2.4 Pesticide labelling...219
 10.2.5 Worker protection standard (WPS) and certification training220
 10.2.6 Pesticide storage and disposal221
 10.2.7 Pesticide import and export policy221
 10.2.8 Needs for improvement of pesticide legislative regulation in Vietnam ..222

10.3 Normative needs for pesticide regulatory and safety programs224
10.4 Expressed needs for safety in pesticide application with farmers......227
10.5 Felt needs for pesticide safety program with farmers..........................228
10.6 Occupational health risk management of pesticides229
10.7 Evaluation of needs for pesticide-related occupational health safety 231
10.8 Conclusions ..235

CHAPTER 11 CONCLUSIONS AND RECOMMENDATIONS237
REFERENCES ..242

APPENDIXES 262

Appendix 4.1 Subject Information Sheet ...263
Appendix 4.2 Informed Consent Form..265
Appendix 4.3 Applicator Enrolment Questionnaire266
Appendix 4.4 Field Observation Questionnaire270
Appendix 4.5 Urine Sampling Questionnaire ...271
Appendix 4.6 Master form for sample submission272
Appendix 4.7 An example of ADD calculation273
Appendix 8.1 Calculation of doses from urinary TCP and air concentration reported in epidemiological studies.................................276
Appendix 8.2 Calculation of Lifetime Average Daily Dose (LADD) from Absorbed Daily Dose (ADD) reported in epidemiological studies......277
LIST OF FIGURES

Figure 2.1 The map of Vietnam ... 9
Figure 2.2 Pesticide use in Vietnam, 1990-1999 .. 14
Figure 2.3 The basic chemical formula of Organophosphate compounds 16
Figure 2.4 A theoretical dose-effect relationship for acute toxicity comparing the potential for exposure in terms of occupation, level of exposure, and possible biological effects .. 30
Figure 2.5 Chemical structure of chlorpyrifos ... 41
Figure 2.6 Degradation pathways for chlorpyrifos 42
Figure 2.7 The model of health risk assessment by Australian enHealth (2002) 47
Figure 2.8 Hypothetical results of PHRA estimated using MCS 54
Figure 2.9 The relationship of exposure and dose-response values expressed by log-normal distribution (A) and cumulative log-normal distribution (B) 55
Figure 2.10 Cumulative probability distribution of the concentration of DDE in eggs combined with data on percentage reduction in the survival of young bird 56
Figure 2.11 Risk characterization of TCM and TCHM describing the relationship between Exposure Dose (EXP_D), Human Equivalent Dose (HED), and Lifetime Average Daily Dose (LADD_H) .. 57
Figure 2.12 Exposure exceedence curve estimated from the cumulative probability distribution of exposure and dose-response values .. 58
Figure 4.1 Research framework used in this current research 70
Figure 4.2 A pack of Lorsban 30EC (Chlorpyrifos Ethyl 300g/l) which participant farmers used .. 72
Figure 4.3 Research location: Vu Le Commune, Kien Xuong District, Thai Binh Province .. 73
Figure 4.4 Urinary concentration of TCP plotted against experimental times at room (20.5°C) and refrigerator temperature (3°C) ... 83
Figure 4.5 Urinary TCP calibration curves .. 86
Figure 4.6 The steps in the procedure for estimating chlorpyrifos ADD 92
Figure 4.7 Calculation of exposure exceedence values from dose-response curve 101
Figure 4.8 Exposure exceedence curve derived from EEC values and affected doses 102
Figure 5.1 Strategy for risk assessment and identifying hazard of chlorpyrifos in Vietnam ... 108
Figure 5.2 Classification of cases reported by Poisoning Control Centre, Bach Mai Hospital, Hanoi, Vietnam ... 113
Figure 6.1 Strategy for TCP monitoring in exposure assessment of chlorpyrifos with farmers in Vietnam

Figure 6.2 Plots of the mean of urinary creatinine against Age, Weight, and Height of farmers

Figure 6.3 Plots of 24-hour urinary creatinine concentration (maximum, 75th, mean, 25th, and minimum) of rice farmers against time frame of pesticide application

Figure 6.4 Urinary TCP (minimum, 25th, median, 75th, and maximum) against Time in relation to pesticide application

Figure 6.5 Plots of urinary TCP against age, weight, and height of farmers

Figure 6.6 Comparison of baseline urinary TCP concentration

Figure 6.7 Comparison of total urinary TCP concentration

Figure 7.1 Strategy for risk assessment and measuring exposure doses of chlorpyrifos with farmers

Figure 7.2 Human pathways of exposure, distribution and excretion of chlorpyrifos

Figure 7.3 Baseline chlorpyrifos Absorbed Daily Dose (ADD_B) over the days prior to application (Application day is 0)

Figure 7.4 Comparison of baseline chlorpyrifos Absorbed Daily Dose (ADD_B) reported for farmers from different countries

Figure 7.5 Baseline chlorpyrifos Absorbed Daily Dose (ADD_B) of Vietnamese farmers

Figure 7.6 Chlorpyrifos ADD_A over the pesticide post-application period

Figure 7.7 CPD of ADD_A

Figure 7.8 CFD of ADD_B and ADD_A

Figure 7.9 Comparison of Chlorpyrifos ADD_A derived from the data reported for farmers from different countries

Figure 7.10 CFD plots of total exposure to chlorpyrifos, (ADD_T) of Vietnamese farmers

Figure 7.11 Lifetime Average Daily Dose of Chlorpyrifos (LADD_E) exposure of participant farmers

Figure 7.12 Average Daily Dose after application (ADD_A) and Lifetime Average Daily Exposure Dose (LADD_E) of of participant farmers Chlorpyrifos

Figure 8.1 Strategy for risk assessment and establishing the dose-response relationships for chlorpyrifos

Figure 8.2 Chlorpyrifos doses and adverse biological effects as derived from data on animals and epidemiological data on human populations

Figure 8.3 Probabilistic distribution of doses corresponding to adverse effects on humans and animals data
Figure 8.4 Comparison of Lifetime Average Daily Dose (LADD_D) from Figure 8.3 derived from epidemiological data with the Chronic Guidelines from various agencies ... 189

Figure 8.5 Comparison of Absorbed Daily Dose corresponding to neurotoxicity (ADD_DN) with Acute Guidelines from various agencies (Table 8.8) 190

Figure 8.6 CFD of the Lifetime Average Daily Dose (LADD_D) and Absorbed Daily Dose corresponding to neurotoxicity (ADD_DN) .. 192

Figure 9.1 Strategy for the risk characterization of chlorpyrifos with rice farmers ...197

Figure 9.2 CPD of the Baseline Absorbed Daily Dose (ADD_B) of participant farmers compared with the chronic guidelines recommended by various agencies with Chlorpyrifos... 199

Figure 9.3 Post-application Absorbed Daily Dose (ADD_A) of rice farmers and acute guidelines of chlorpyrifos... 200

Figure 9.4 Chlorpyrifos Lifetime Average Daily Dose (LADD_E) of rice farmers and chronic guidelines .. 201

Figure 9.5 Baseline Exposure doses (ADD_B) and Lifetime Average Daily Dose corresponding to adverse health effects (LADD_D) .. 203

Figure 9.6 Post-application Exposure doses (ADD_A) and Doses corresponding to neurological effects (ADD_DN) ... 204

Figure 9.7 Lifetime Average Daily Dose of exposure (LADD_E) and Lifetime Average Daily Dose corresponding to adverse health effects (LADD_D) .. 205

Figure 9.8 Exposure doses with participant farmers (ADD_B, ADD_A, LADD_E from Figures 7.5, 7.7, and 7.11) and adverse biological effects doses from epidemiological studies of human populations (ADD_D, LADD_D from Tables 8.2-8.5) 207

Figure 9.9 Hazard Quotient distribution (ADD_B/LADD_D) using Monte Carlo simulations for baseline exposure levels of chlorpyrifos with farmers (ADD_B) with dose-response relationship lifetime average daily dose for adverse effects (LADD_D). .. 208

Figure 9.10 Hazard Quotient distribution (LADD_E/LADD_D) using Monte Carlo simulations for lifetime average exposure levels of chlorpyrifos with farmers (LADD_E) with dose-response relationship lifetime average daily dose for adverse effects (LADD_D). ... 209

Figure 9.11 Hazard Quotient distribution (ADD_A/ADD_DN) using Monte Carlo simulations for Post-application exposure levels of chlorpyrifos with farmers (ADD_A) with absorbed daily dose for acute neurotoxicity (ADD_DN) .. 210

Figure 9.12 Exposure exceedence curves derived from the CPD of exposure (ADD_B, ADD_A, LADD_E) and dose-response values (LADD_D, ADD_DN) as derived from Figure 9.5, 9.6 and 9.7 .. 211

Figure 10.1 Overall strategy for research in this thesis including needs assessment for pesticide risk reduction measures leading to recommendations for risk management .. 216
LIST OF TABLES

Table 2.1 Average farm size and cultivated rice area by region .. 10
Table 2.2 Onset and duration of the anticholinesterase action of some organophosphate compounds in rats .. 20
Table 2.3 Clinical symptoms of different grades of OP poisoning and corresponding ChEA value ... 29
Table 2.4 Oral dose-effect relationship with some OPs .. 40
Table 4.1 Urinary sampling matrix and identification number ... 79
Table 4.2 Design of urinary TCP stability trial .. 82
Table 4.3 Urinary TCP stability trial means comparison (T-test) 83
Table 4.4 Preparation of urine TCP standard matrix ... 84
Table 4.5 TCP relative percentage difference of duplicate samples (µg/l) 87
Table 4.6 Recovery of TCP from spiked urine ... 87
Table 4.7 TCP relative percentage difference of repeated samples (µg/l) 87
Table 4.8 Reagent composition for creatinine analysis .. 89
Table 4.9 Creatinine relative percentage difference of duplicate samples (µmol/l) 89
Table 4.10 Summary of regression equation data for extrapolating and interpolating of TCP values ** ... 93
Table 4.11 In-depth interviewees categorized by agencies .. 107
Table 5.1 Chlorpyrifos of the list of plan protection pesticides permitted for use in Vietnam 2009 .. 110
Table 6.1 Urinary creatinine (mg/dL) levels as for individual rice farmers 119
Table 6.2 Pre- and post- application sample urinary TCP (µg/g creatinine) 121
Table 6.3 Chlorpyrifos Absorbed Daily Dose (ADD) estimated from total urinary TCP .. 126
Table 7.1 Personal details of the participant farmers ... 131
Table 7.2 Rice cultivation and chlorpyrifos application by the farmers 132
Table 7.3 Calculation of percent covered by clothing during application of chlorpyrifos ... 140
Table 7.4 The correlation coefficients (r) of ADDA and exposure factors 143
Table 7.5 Summary of multivariate regression models with chlorpyrifos ADDA 145
Table 7.6 Summary results of regression model using dummy variables of Personal Protective Equipment .. 146
Table 7.7 Publications used to derive exposure data ... 149
Table 7.8 The percentage difference between ADD_A and ADD_T 152
Table 8.1 Chlorpyrifos acute LD_{50} values reported for different species of mammals .. 165
Table 8.2 Dose-response of chlorpyrifos for neurotoxicity from animal studies 166
Table 8.3 Dose-response of chlorpyrifos for non-neurotoxicity from animal studies. 169
Table 8.4 Dose-response of chlorpyrifos for neurotoxicity from epidemiological studies with human population .. 173
Table 8.5 Dose-response of chlorpyrifos for non-neurotoxicity from epidemiological studies with human populations ... 176
Table 8.6 Unmeasured dose-response relationships of chlorpyrifos from epidemiological studies with human populations... 178
Table 8.7 Ratios between LADD_D and HED_A, HED_C .. 183
Table 8.8 Acute guidelines for exposure to chlorpyrifos from various agencies 185
Table 8.9 Chronic guidelines for exposure to chlorpyrifos from various agencies 187
Table 9.1 Comparison of the Safety Ratios estimated in this study and the Safety Factors used by various agencies. ... 212
Table 10.1 Summary of suggested needs for improving pesticide regulations in
Vietnam .. 223
Table 10.2 Observations and interview of farmers on pesticide application 226
Table 10.3 Evaluation of Needs and Recommendations 234
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>Absorbed Daily Dose</td>
</tr>
<tr>
<td>ADD<sub>A</sub></td>
<td>Post-application Absorbed Daily Dose</td>
</tr>
<tr>
<td>ADD<sub>B</sub></td>
<td>Baseline Absorbed Daily Dose</td>
</tr>
<tr>
<td>ADD<sub>D</sub></td>
<td>Absorbed Daily Dose corresponding to adverse health effect</td>
</tr>
<tr>
<td>ADD<sub>DN</sub></td>
<td>Absorbed Daily Dose corresponding to neurological effects</td>
</tr>
<tr>
<td>ADD<sub>T</sub></td>
<td>Total Absorbed Daily Dose</td>
</tr>
<tr>
<td>ADI</td>
<td>Acceptable Daily Intake</td>
</tr>
<tr>
<td>ATSDR</td>
<td>Agency for Toxic Substances and Disease Registry</td>
</tr>
<tr>
<td>CFD</td>
<td>Cumulative Frequency Distribution</td>
</tr>
<tr>
<td>ChE</td>
<td>Cholineseterase</td>
</tr>
<tr>
<td>AChE</td>
<td>Acetylcholinesterase</td>
</tr>
<tr>
<td>BuChE</td>
<td>Burytylcholinesterase</td>
</tr>
<tr>
<td>CPD</td>
<td>Cumulative Probability Distribution</td>
</tr>
<tr>
<td>EEC</td>
<td>Exposure Exceedence Curve</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization</td>
</tr>
<tr>
<td>FFDCRA</td>
<td>Federal Food, Drug and Cosmetic Act</td>
</tr>
<tr>
<td>FGD</td>
<td>Focus Group Discussion</td>
</tr>
<tr>
<td>FIFRA</td>
<td>Federal Insecticide, Fungicide, and Rodenticide Act</td>
</tr>
<tr>
<td>HED</td>
<td>Human Equivalent Dose</td>
</tr>
<tr>
<td>HED<sub>A</sub></td>
<td>Acute Human Equivalent Dose</td>
</tr>
<tr>
<td>HED<sub>C</sub></td>
<td>Chronic Human Equivalent Dose</td>
</tr>
<tr>
<td>HQ</td>
<td>Hazard Quotient</td>
</tr>
<tr>
<td>HRA</td>
<td>Health Risk Assessment</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research of Cancer</td>
</tr>
<tr>
<td>IPM</td>
<td>Integrated Pesticide Management</td>
</tr>
<tr>
<td>LADD</td>
<td>Lifetime Average Daily Dose</td>
</tr>
<tr>
<td>LADD<sub>D</sub></td>
<td>Lifetime Average Daily Dose corresponding to adverse health effects</td>
</tr>
<tr>
<td>LADD<sub>E</sub></td>
<td>Lifetime Average Daily Exposure Dose</td>
</tr>
<tr>
<td>LC/MS</td>
<td>Liquid Chromatography/Mass Spectrometry</td>
</tr>
<tr>
<td>LOAEL</td>
<td>Lowest Observable Adverse Effect Level</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of Detection</td>
</tr>
<tr>
<td>LOEL</td>
<td>Lowest Observable Effect Level</td>
</tr>
<tr>
<td>LOR</td>
<td>Limit of Report</td>
</tr>
<tr>
<td>MCS</td>
<td>Monte Carlo Simulation</td>
</tr>
<tr>
<td>MF</td>
<td>Modifying Factor</td>
</tr>
<tr>
<td>MRL</td>
<td>Minimum Risk Level</td>
</tr>
<tr>
<td>NHEXAS</td>
<td>National Human Exposure Assessment Survey</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No Observable Adverse Effect Level</td>
</tr>
<tr>
<td>NOEL</td>
<td>No Observable Effect Level</td>
</tr>
<tr>
<td>NPIE</td>
<td>National Pesticide Information Center</td>
</tr>
<tr>
<td>NRA</td>
<td>Australian National Registration Authority for Agriculture & Veterinary Chemical</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Cooperation and Development</td>
</tr>
<tr>
<td>OP</td>
<td>Organophosphate</td>
</tr>
<tr>
<td>OPPQ</td>
<td>Ordinance on Plant Protection and Quarantine</td>
</tr>
<tr>
<td>ORP</td>
<td>Overall Risk Probability</td>
</tr>
<tr>
<td>PAD</td>
<td>Population Adjusted Dose</td>
</tr>
<tr>
<td>aPAD</td>
<td>acute Population Adjusted Dose</td>
</tr>
<tr>
<td>cPAD</td>
<td>chronic Population Adjusted Dose</td>
</tr>
<tr>
<td>PDD</td>
<td>Predicted Daily Dose</td>
</tr>
<tr>
<td>PHRA</td>
<td>Probabilistic Health Risk Assessment</td>
</tr>
<tr>
<td>QHFSS</td>
<td>Queensland Health Forensic and Scientific Service</td>
</tr>
<tr>
<td>RfD</td>
<td>Reference Dose</td>
</tr>
<tr>
<td>aRfD</td>
<td>acute Reference Dose</td>
</tr>
<tr>
<td>cRfD</td>
<td>chronic Reference Dose</td>
</tr>
<tr>
<td>RQ</td>
<td>Risk Quotient</td>
</tr>
<tr>
<td>SF</td>
<td>Safety Factor</td>
</tr>
<tr>
<td>SRV</td>
<td>Socialist Republic Vietnam</td>
</tr>
<tr>
<td>TCP</td>
<td>3,5,6-trichloro-2-pyridinol</td>
</tr>
<tr>
<td>TDI</td>
<td>Tolerable Daily Intake</td>
</tr>
<tr>
<td>UF</td>
<td>Uncertainty Factor</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Program</td>
</tr>
<tr>
<td>US EPA</td>
<td>United State Environment Protection Agency</td>
</tr>
<tr>
<td>VN MARD</td>
<td>Vietnam Ministry of Agricultural and Rural Development</td>
</tr>
<tr>
<td>VN MOH</td>
<td>Vietnam Ministry of Health</td>
</tr>
<tr>
<td>VN MOLISA</td>
<td>Vietnam Ministry of Labor, Invalid and Social Affair</td>
</tr>
<tr>
<td>VN MONRE</td>
<td>Vietnam Ministry of Natural Resource and Environment</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>