The Effects of Accent Method Breathing on the Development of Young Classical Singers

A dissertation submitted in fulfilment of the requirement for the award of the degree of Doctor of Philosophy

Ron Morris
Student No. 361477
Submission Date: 17/12/12

Supervisors: Huib Schippers
Scott Harrison
Helen Klieve
Abstract

Breathing and support are considered cornerstones of a secure vocal technique for classical singing. No area of vocal pedagogy has been more controversial and, despite recent advances in the understanding of how the respiratory system functions both in speech and song, some breath management strategies for singing continue to be at odds with scientific fact. Furthermore, many students find the development of these skills a challenge. Accent Method Breathing is a technique that is well grounded in science as it is based on the structure and function of the respiratory system. Accent Method was developed for the remediation of speech and voice difficulties but in the past 20 years it has also been used to help develop breathing and support in singers. The method has been used in both private singing studios and in institutions such as the Queensland Conservatorium Griffith University. Extant research in to Accent Method has focussed on its use in clinical populations and on its effects on the voices of normal speakers. Accent Method has never been evaluated specifically on singers though anecdotal evidence and clinical experience attest to its efficacy with this population.

The current study aimed to evaluate the efficacy of Accent Method Breathing with students of classical singing in the early years of their training. A group of students underwent a 10 week group instruction in Accent Method with a matched group of students acting as controls. Measures were taken pre and post intervention consisting of Maximum Phonation Time (MPT), Mean Air Flow Rate through steady state vowels (MFR) and a Phonetogram. The students were also recorded singing a standard passage that was later judged by an expert panel.
There were no significant differences identified in MPT or MFR post intervention however the experimental group, who received Accent Method training, did demonstrate highly significant changes to their phonetograms with both average dynamic range and the maximum number of semi-tones sung showing an improvement. Although the MFR did not show any significant results a qualitative analysis of the airflow tracing morphology did indicate a positive effect that appeared to be due to the Accent Method training. The panel of judges also demonstrated a greater preference for the experimental group’s singing samples post intervention than they did for the control group’s post intervention recordings.

Accent Method Breathing appears to be effective in bringing about change in the voices of young classical singers. Improvements in average dynamic range, total pitch range and air flow tracing morphology were identified. The panel of judges also expressed a preference for the singing samples of the students who had undergone Accent Method training.
Statement of authenticity

The work contained in this dissertation is that of Ronald Morris and has not previously been submitted for an award at any other higher education institution. To the best of my knowledge and belief, no material previously published or written by another person has been included except where due reference is made in the dissertation. Selected material drawn from this dissertation that is the original work of the author has been previously published in a selection of book chapters throughout the course of completing this work.

Ronald Morris
July 2012

Acknowledgements

I would like to express my sincere thanks to Janice Chapman for her inspiration as my own singing teacher and her unfailing support as a colleague; The Guildhall School of Music and Drama (London) especially Linnhe Robertson (Head of Voice) for allowing me to work in the school and collect data from the vocal students; Dinah Harris and Ingrid Rugheimer who taught me Accent Method; Sara Harris for the loan of her Aerophone equipment; Dr. Alison Winkworth who was instrumental in the early stages of this project; Kerrie-Ann Thornber for proof-reading one of the later drafts and the staff and students of the Queensland Conservatorium Griffith University who helped me develop the group instruction programme through continuous practice. Much gratitude is owed to my supervisors, Professor Huib Schippers, Dr. Helen Klieve and Dr. Scott Harrison. Finally I thank the participants for their willingness to undertake this study with me.
Contents:

Abstract

Certification

Acknowledgements

List of Figures

Figure 1 Pump Handle Action of Ribs page 24
Figure 2 Bucket Handle Action of Ribs page 25
Figure 3 Diaphragm page 30
Figure 4 Abdominal muscles of expiration page 38
Figure 5 Largo Patterns in Accent Method page 118
Figure 6 Andante Patterns in Accent Method page 120
Figure 7 Allegro Patterns in Accent Method page 121
Figure 8 Study Patterns 1st Accent Bounce page 148
Figure 9 Side by Side Position page 149
Figure 10 Face to Face Position page 149
Figure 11 Study Patterns Largo page 151
Figure 12 Study Patterns Largo Movement page 152
Figure 13 Study Patterns Andante page 154
Figure 14 Study Patterns Andante Movement page 155
Figure 15 Study Patterns Largo Release page 157
Figure 16 Chapman’s Hey Hah Exercise page 158
Figure 17 Study Patterns Largo Fric Babble page 159
Figure 18 Study Patterns Andante Release page 159
Figure 19 Study Patterns Allegro page 160
Figure 20 Chapman’s Hey Hah Exercise page 161
Figure 21 Fricative Glide Exercise page 161
Figure 22 Chapman’s Rolled ‘r’ Exercise page 162
Figure 23 Study Patterns Largo Babble page 163
Figure 24 Study Patterns Andante Fric Babble page 164
Figure 25 Chapman’s Hey Hay Exercise page 165
Figure 26 Study Patterns 1st Accent Bounce page 166
Figure 27 Study Patterns Exclamations page 167
Figure 28 Chapman’s Vowel Legato Exercise page 168
Figure 29 Aerophone Tracing (Normal) page 179
Figure 30 Aerophone Tracing (Atypical) page 180
Figure 31 Aerophone Tracing (Normal) page 181
Figure 32 Aerophone Tracing (Atypical) page 181
Figure 33 Aerophone Tracing (Pre and Post) page 182
Figure 34 Aerophone Tracing (Pre and Post) page 184
Figure 35 Phonetogram Control Group page 187
Figure 36 Phonetogram Experimental Group page 188
Figure 37 Phonetogram Post Intervention page 189
Figure 38 Phonetogram Subject 13 page 190
Figure 39 Phonetogram Subject 10 page 190
Figure 40 Phonetogram Subject 11 page 191
Figure 41 Phonetogram Subject 6 page 192

List of Tables

Table 1 Demographics page 171
Table 2 Pre-Intervention Statistics page 172
Table 3 M.P.T. (microphone) page 173
Table 4 M.P.T. (Aerophone) page 174
Table 5 M.P.T. by acquisition type page 175
Table 6 M.P.T. by Octaves page 175
Table 7 M.F.R. by Octaves page 177
Table 8 M.F.R. Pre and Post intervention page 178
Table 9 Percentage of Change in M.F.R. page 179
Table 10 Average Dynamic Range page 185
Table 11 Maximum Number of Semitones page 185
Table 12 Average Dynamic Range by group page 186
Table 13 Max Semitones by group page 186
Table 14 Judge Preference by group page 192
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>The Art and Science of Singing</td>
<td>1</td>
</tr>
<tr>
<td>Chapter One</td>
<td>Importance of Breathing to Classical Singing</td>
<td>8</td>
</tr>
<tr>
<td>Chapter Two</td>
<td>Respiratory Anatomy and Physiology</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Breathing for Singing</td>
<td>40</td>
</tr>
<tr>
<td>Chapter Three</td>
<td>Breathing and Breath Management from the Vocal Pedagogical Literature</td>
<td>66</td>
</tr>
<tr>
<td>Chapter Four</td>
<td>The Accent Method of Breathing</td>
<td>111</td>
</tr>
<tr>
<td>Chapter Five</td>
<td>Methodology</td>
<td>130</td>
</tr>
<tr>
<td>Chapter Six</td>
<td>Results</td>
<td>171</td>
</tr>
<tr>
<td>Chapter Seven</td>
<td>Discussion</td>
<td>194</td>
</tr>
<tr>
<td>Chapter Eight</td>
<td>Conclusion</td>
<td>209</td>
</tr>
<tr>
<td>Bibliography</td>
<td></td>
<td>214</td>
</tr>
</tbody>
</table>