The therapeutic applications of medium-chained saturated fatty acids in the treatment and prevention of intestinal protozoal infections

Paran RAYAN
BSc, MSc (HONS)

School of Biomolecular and Physical Sciences
Science, Environment, Engineering and Technology
Griffith University

Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy
October 2009
Dedicated to everyone who helped make me who I am today,

for I am a day closer to fulfilling my dreams

because of you!
Statement of Originality

The material presented in this thesis has not been previously submitted for a degree or diploma in any university, and to the best of my knowledge, contains no material previously published or written by another person except where due acknowledgement is made in the thesis itself.

Signature:

--

Paran Rayan

October 2009
Acknowledgements

I hereby wish to pen my deep felt sense of gratitude and thanks to my supervisor and mentor Dr. P Ann McDonnell for being my guide in carrying out this research project. Thanks, Ann, for being the best and teaching me to keep trying and never give up till I reach the goal I seek.

Special thanks to my associate supervisor Dr. Helen Stratton for her support and encouragement throughout this tenure. Thanks also to the staff at the School of BPS, Griffith University for their words of kindness and cheer. I am especially thankful to Dr. Deborah Stenzel (Queensland University of Technology, Brisbane Australia) for helping me with the scanning and transmission electron microscopy.

I am thankful to Dr. Susan Verghese and her staff at The International Centre for Cardio Thoracic and Vascular Diseases, Chennai, India for all the assistance and support rendered without fail during my research tenure in India.

I am indebted to Mr. M. Joy Samuel for his expertise and photographic documentation on-site during research studies in India. Special thanks also to everyone who helped organize and co-coordinate the human studies in Chennai, Tamil Nadu; Ernakulum, Kerala and Kedgaon, Maharashtra.

I am grateful to my Mum and Dad for teaching me to ask ‘why’ and instilling in me that the world was my limit, and my sister Shemida for believing in me. Thank you to Uncle Col and Aunty Val, for opening up their house and especially, Uncle Col for helping me proof-read all my documents.

Thanks to my support-group in Australia and overseas, who have stood by me through thick and thin, ‘been my 911’ every time I needed.

Finally, above all, I would like to thank My God Almighty for His Grace and strength that enabled me to complete this doctoral research.

My apologies to anyone I missed, but be assured that your help and advice was received with much gratitude.
Abstract

Giardia duodenalis is a protozoal, intestinal parasite that is a common aetiological agent of infectious diarrhoea in humans worldwide. Chemotherapeutic intervention presently offers a limited range of drugs and these are usually only employed after clinical diagnosis. Moreover, these drugs are ineffective against the infectious cysts, can produce unpleasant side effects, and are expensive with limited availability in developing countries. Frequent reports of drug toxicity, treatment failure and parasite drug resistance have, in some instances, also resulted in the increasing reluctance to over-prescribe synthetic anti-microbials. Alternatively, there is now mounting evidence to suggest that some of the naturally derived, medium-chain, saturated fatty acids (MCSFAs) possess anti-microbial and anti-parasitic properties.

I have therefore examined the effects of four different fatty acids on *G. duodenalis* trophozoites in vitro. Cytotoxicity was determined using fluorescence, scanning and transmission electron microscopic techniques and standard cytotoxicity assays. My studies have confirmed that the MCSFA, dodecanoic acid (C:12; common name lauric acid; DA), is anti-giardial with an LD$_{50}$ concentration comparable to that of metronidazole, the drug of choice in the treatment of giardiasis. DA appears to induce trophozoite death by accumulating within the parasite cytoplasm resulting in rupture of the cell membrane.

In vivo trials in mice using DA and coconut oil (which consists of 45-55% DA) as dietary supplements have also appeared promising against *G. duodenalis* infection, however the water soluble derivative, monolaurin (C:15; dodecanoic acid, 2,3-dihydroxypropyl ester) did not. These studies have opened fresh avenues for development of natural drug therapy in which food supplementation may augment, or even replace, some of the standard chemotherapeutic agents presently employed in the treatment of giardiasis and possibly other infectious intestinal diseases.

In order to develop an alternate model to further our research goals, 3-D tissues grown in vitro were used to explore disease pathogenesis, which could possibly replace expensive experimental animal models. Tissue engineering is a relatively modern and expanding field of medical research working to
develop appropriate models and technologies to promote the regeneration of human tissues. This includes the restoration of tissue and organ function via creating biological substitutes in place of harvested tissues, artificial implants and prostheses. Full clinical regeneration of a tissue encompasses the source of suitable cell types, encouraging these cells to grow into an appropriate, fully functioning, three-dimensional (3-D) tissue, and incorporating this tissue successfully into the recipient. Likewise, three dimensional tissues employed in medical research would reduce the need for several animal experimentation protocols, particularly in the fields of tropical medicine with emphasis on parasitology.

The extracellular matrix (ECM), consisting of the organised network of extracellular materials that surrounds living cells, is an important component of all tissues and organs. My research has attempted to grow an epithelial cell line – CaCO2 on the 3-D scaffold. The 3D tissue constitute was then inoculated with Giardia duodenalis trophozoites. The 3-D tissue constitute and trophozoites scaffold seeded with mammalian cell lines and trophozoites were grown for set periods of time and then observed microscopically using light and scanning electron microscopies. *In vitro* demonstration of clinical pathology such as microvillus blunting was observed even after only 1 hour post inoculation. This 3-D model explored the applicability of an *in vitro* model for host-parasite co-culture and disease pathogenesis. The practical significance of these studies paves the way for future drug trials using these *in vitro* alternatives.

A pilot ‘preliminary’ study was undertaken where faecal samples from 195 school children (rural = 95; male = 39; female = 56) (urban = 100; male = 60; female = 40) of five age groups ranging from 5 to 11 years in two different socio-economic zones (rural and urban) were screened for specific intestinal parasites. Percentage prevalences of parasitic species found in faecal wet mounts and concentrates in rural children were: *Entamoeba coli* (25.3%), *Giardia lamblia* (17.9%), *Blastocystis hominis* (14.7%), *E. histolytica* (4.2%), *Iodamoeba butschlii* (1.1%), *Hymenolepis nana* (1.1%), *Ascaris lumbricoides* (1.1%), *Ancylostoma duodenale* (0%) and *Trichuris trichiura* (0%). The percentage incidences in urban children were: *Entamoeba coli* (26%), *A. lumbricoides* (21%), *B. hominis* (18%), *G. duodenalis* (14%), *T. trichiura* (8%), *I. butschlii* (4%), *A. duodenale* (1%), *E. histolytica* (0%), and *H. nana*.
These data indicate that there were greater incidences of *I. butschlii*, *B. hominis*, *A. lumbricoides* and *T. trichiura* infections in urban children compared to rural children, but that both populations had high (over 25%) incidence rates of *Entamoeba coli*. Nematode infestations, in particular *A. lumbricoides* and *T. trichiura*, were found in twice the number of urban as rural children. Such findings may be related to dietary differences, living conditions and the greater use of natural anti-helminthic medicinal plants in rural communities. These results are important for both epidemiological data collection and correlating dietary differences to intestinal parasitic diseases.

Dietary supplements of coconut oil, gingellee oil and Monolaurin were offered to 1128 school children from 3 States (Tamil Nadu, Kerala and Maharashtra) in India and then screened for intestinal parasites. The participant age groups ranged from 2-16 years and their sex ratio was 534 male and 594 female. These studies compared the prevalence rates of intestinal helminthic infestations and pathogenic protozoal infections, (in particular *G. duodenalis*), in populations that were offered supplemements of coconut oil and Monolaurin. In addition, these studies have also determined that the children from rural communities appeared to have reduced prevalences of intestinal parasites when compared to their urban counterparts. In summary, certain populations within both rural and urban communities clearly showed that supplemements of coconut oil or Monolaurin reduced helminthic and protozoal intestinal infections. These results are intriguing and further investigations are warranted in order to determine the exact factors behind these results. Various factors that could possibly affect the parasitic burdens, infection rates, and susceptibility were investigated and documented. It is anticipated that the novel compound (dodecanoic acid) under investigation in this doctoral research project may have some future application in parasitic infection treatment strategies. To date, these studies are the only human trials that have attempted to examine the antiparasitic effects of products containing the MCSFA, dodecanoic acid and Monolaurin.
Table of contents

Dedication I
Statement of Originality II
Acknowledgement III
Abstract IV
List of Tables XIV
List of Figures XVI
List of Abbreviations XXVII

1. Literature Review 1
 1.1. Introduction 2
 1.2. History, taxonomy and nomenclature of Giardia species 3
 1.2.1. Giardia species classification by Assemblages (Lineage A and B) 6
 1.3. Life-cycle of the parasite 7
 1.3.1. The trophozoite 10
 1.3.2. The cyst 11
 1.3.3. Process of encystation 11
 1.4. Epidemiology 12
 1.4.1. Human studies 12
 1.4.2. Other animals 13
 1.5. Mode of transmission of the infection 14
 1.5.1. Oro-faecal transmission 14
 1.5.2. Food-borne transmission 15
 1.5.3. Waterborne transmission 15
 1.5.4. Zoonotic transmission 16
 1.6. Clinical manifestations of giardiasis 17
 1.7. Diagnosis 18
 1.8. Immune response to Giardia duodenalis 19
 1.8.1. Toll receptors 21
 1.8.2. Surface antigens of Giardia duodenalis trophozoites 21
 1.8.3. Antigenic variation 21
 1.8.4. Toxin production 22
 1.9. Treatment 23
 1.9.1. Anti-giardial drug actions 25
1.10. Prevention and control 29
1.11. The neonatal murine model for *G. duodenalis* infection 30
1.12. Lipid metabolism in *Giardia duodenalis* trophozoites 32
 1.12.1. Lipid reserves in trophozoites 32
 1.12.2. Energy metabolism 32
 1.12.3. Lipid and fatty acid synthesis 33
 1.12.4. Phospholipids in *G. duodenalis* trophozoites 34
 1.12.5. Free and esterified sterols 35
 1.12.6. Experimentation using radio-labelled biological precursors 35
 1.12.7. Lipid endocytic pathways in trophozoites 36
 1.12.8. Lipid remodelling by *G. duodenalis* trophozoites 38
 1.12.9. Enzymes involved in lipid metabolism in *G. duodenalis* 42
 1.12.10. Modification of protozoal proteins by lipids and fatty acids 42
 1.12.11. Micro-environmental interactions of *G. duodenalis* trophozoites with intestinal fatty acid components 44
 1.12.12. Fatty acid composition of non-encysting and encysting *G. duodenalis* trophozoites 45
 1.12.13. Anti-giardial drugs associated with lipid metabolism 47
1.13. Characteristics of medium-chain, saturated, fatty acids (MCSFA’s) and their relationships with infectious organisms 48
1.14. Dietary supplementation, mammalian physiology and metabolism of fatty acids and lipids 52
 1.14.1. Sources of fatty acids 52
 1.14.2. Beta-oxidation of a fatty acid 55
 1.14.3. Methods of interorgan transport of the stored FA 57
1.15. Fatty acids in mammalian breast milk 59
 1.15.1. Immunologic factors in human breast milk 59
 1.15.2. Breast milk components and immune system development 60
1.16. Expression of fatty acids in mammalian breast milk 62
1.17. Population studies on the consumption of dodecanoic acid and coconut oil products and related health benefits 63
1.18. The effects of dietary supplementation on parasitic disease 65
1.19. Aims and objectives of this thesis 68
2. The in vitro effects of different medium-chain saturated fatty acids on

Giardia duodenalis trophozoites

2.1. Introduction

2.2. Material and Methods

2.2.1. Source of *Giardia duodenalis* culture

2.2.2. Culture and harvest of *Giardia* trophozoites

2.2.3. Culture medium used for trophozoite in vitro

2.2.4. Enumeration of parasites

2.2.5. Cryopreservation and cryoretrieval of parasites

2.3. Microscopy

2.3.1. Preliminary preparation and fixation of trophozoites

2.3.2. Scanning electron microscopy

2.3.3. Transmission electron microscopy

2.3.4. Fluorescence microscopy

2.3.5. Sudan black fat staining

2.4. Screening of different medium-chain saturated fatty acids

2.5. Results

2.5.1. Parasite viability studies

2.5.2. Parasite morphology and lipid localisation studies

2.5.3. Light microscopy

2.5.4. Fluorescence microscopy

2.5.5. Scanning electron microscopy

2.5.6. Transmission electron microscopy

2.6. Discussion

2.7. Conclusion and future direction

3. Investigations of a novel three-dimensional tissue construct for use as an experimental in vitro model for examining some of the pathological aspects of giardiasis

3.1. Introduction

3.1.1. Three-dimensional cellular scaffolds and their applications in tissue bioregeneration and in vitro modelling

3.1.2. Spongin as a potential 3-D cellular scaffold for use in tissue engineering and 3-D culture systems

3.1.3. Experimental models for giardiasis

3.1.3.1. Animal model
3.1.3.2. Cell culture in vitro models

3.2. Materials and Methods

3.2.1. Marine sponge collagen modification

3.2.2. Culturing and passaging of cell lines

3.2.3. Seeding of modified spongin matrix with mammalian cells

3.2.4. Inoculating the modified matrix (previously seeded with mammalian cells) with Giardia duodenalis trophozoites

3.2.5. Scanning Electron Microscopy (SEM) analysis

3.3. Results

3.4. Discussion

3.5. Conclusion

4. Supplementation of the murine maternal diet with dodecanoic acid, coconut oil or monolaurin and its effects on trophozoite burdens of G. duodenalis in suckling murine pups – a preliminary in vivo study

4.1. Introduction

4.1.1. The neonatal murine model for G. duodenalis infection

4.2. Materials and Methods

4.2.1. Source and maintenance of experimental animals

4.2.2. Animal ethics

4.2.3. Dietary Supplementation for the experimental animals

4.2.3.1. Trial 1: Dodecanoic acid (DA) supplementation

4.2.3.2. Trial 2: DA supplementation

4.2.3.3. Trial 3: Coconut oil supplementation

4.2.3.4. Trial 4: Monolaurin supplementation

4.2.4. Experimental infection in neonatal murine pups

4.2.5. Parasite enumeration from the intestinal tract of the murine pups and adults

4.2.6. Microscopy and staining techniques

4.3. Results

4.4. Discussion

4.5. Conclusion

5. A pilot study to identify the intestinal parasites in rural and urban school children in southern India (Tamil Nadu)

5.1. Introduction
5.2. Materials and methods

5.2.1. Description of communities tested

5.2.2. Faecal sample collection

5.2.3. Preservation of faecal sample

5.2.4. Macroscopic examination

5.2.5. Microscopic examination

5.2.6. Sodium chloride (NaCl) floatation technique

5.3. Results

5.4. Discussion

5.5. Conclusion

6. The therapeutic applications of medium-chained saturated fatty acids (as dietary supplements) in the treatment of intestinal parasites in school children from selected rural and urban communities in India

6.1. Introduction

6.2. Rationale for these investigations

6.3. Materials and methods

6.3.1. Experimental protocol

6.3.1.1. Stage 1

6.3.1.2. Stage 2

6.3.1.3. Stage 3

6.3.1.3.1. Macroscopic examination

6.3.1.3.2. Microscopic examination

6.3.1.3.2.1. Saline and iodine wet mounts

6.3.1.3.2.2. NaCl floatation technique

6.3.1.4. Documentation of results

6.3.1.5. Stage 4

6.3.1.6. Stage 4

6.4. Results

6.4.1. Thiruvallur District - rural research sites in the State of Tamil Nadu

6.4.1.1. The Alamadhi Girls Home

6.4.1.2. The Alamadhi Boys Home

6.4.1.3. The “Home” at Thirunindravur

6.4.1.4. The “Home” at Thiruvottiyur

6.4.1.5. Home 25 at Thirunindravur

6.4.2. Kancheepuram District- rural research sites in the State of Tamil Nadu

XII
6.4.2.1. The community at Pallikaranai 193
6.4.2.2. The Boys School at Tambaram 197
6.4.2.3. The Home at Perungalathur 200
6.4.2.4. The Girls Home at Thoraipakkam 203
6.4.2.5. The Thoraipakkam Boys Home 206
6.4.2.6. The Thoraipakkam Home 14 209
6.4.2.7. The Homes at Maraimalar Nagar 212

6.4.3. Urban research sites located in the metropolis of Chennai 216
6.4.3.1. The Robinson School and Boarding House 218
6.4.3.2. The Ayappanthangal Home 221
6.4.3.3. The ADI Home 44 225
6.4.3.4. The Home at Kaatukuppam 228
6.4.3.5. The community at Paraniputhur 232
6.4.3.6. The School and Boarding Facility at Porur 236
6.4.4. Kanyakumari District - a rural research site in the State of Tamil Nadu 240
6.4.4.7. The School for the Blind at Irenipuram 240

6.4.5. Pune District - a rural research site located in the State of Maharashtra 244
6.4.5.1. The Home at Kedgaon 244

6.4.6. Ernakulam District - a rural research site in the State of Kerala 250
6.4.6.1. The community of Ernakulam 250

6.4.7. Overall prevalences of specific parasitic infections in total study populations situated in rural and urban areas of India 255
6.4.7.1. Negative control (no supplementation) trials 256
6.4.7.2. Coconut oil supplementation trials 257
6.4.7.3. Traditional gingellee oil supplementation trials 258
6.4.7.4. Monolaurin supplementation trials 259

6.4.8. A regional analysis of the overall results for the prevalences of specific intestinal parasites within the six districts in the three different states of India 260

6.4.9. Comparative overall results for the prevalences of specific intestinal parasites in rural and urban communities in India (a geographical analysis) 267

6.5. Discussion 275
6.6. Conclusion 278

7. General Discussion and Conclusion 280
7.1. Introduction 281
 7.1.1. In vitro applications of MCSFA’s 281
 7.1.2. Three-dimensional in vitro tissue construct model for G. duodenalis co-culture 284
 7.1.3. In vivo application of dietary supplements in the neonatal murine model 285
 7.1.4. Preliminary ‘pilot’ human studies 286
 7.1.5. Clinical human trials 288
7.2. Future Direction and Conclusion 291
7.3. Final comments 293

8. Bibliography 297

9. Appendix 350
 9.1. Questionnaire for pilot study 351
 9.2. Griffith University Human Ethics Research Submission Certificate 352
 9.3. International Centre for Cardio Thoracic and Vascular Diseases Ethics Approval 353
 9.4. Human studies information sheet 354
 9.5. Human studies consent form 357
 9.6. Instruction to parents and questionnaire 358
 9.7. De-identified list of participant populations and their general demographic and dietary information 362
 9.8. Publications and presentation arising from these studies 888
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>4</td>
</tr>
<tr>
<td>Classification of Giardia duodenalis</td>
<td></td>
</tr>
<tr>
<td>Different Giardia species and their variations in host selection and microscopic characteristics using light and scanning electron microscopies</td>
<td>6</td>
</tr>
<tr>
<td>1.2</td>
<td>6</td>
</tr>
<tr>
<td>List of symptoms manifested in giardiasis</td>
<td>18</td>
</tr>
<tr>
<td>1.3</td>
<td>18</td>
</tr>
<tr>
<td>List of the commonly used drugs in the treatment of giardiasis and their side-effects</td>
<td>24</td>
</tr>
<tr>
<td>1.4</td>
<td>24</td>
</tr>
<tr>
<td>List of the fatty acid composition in G. duodenalis both in the non-encysting and encysting trophozoites</td>
<td>46</td>
</tr>
<tr>
<td>1.5</td>
<td>46</td>
</tr>
<tr>
<td>List of the viruses, bacteria, fungi and protozoal parasites that are either inactivated or killed in vitro by medium-chain saturated fatty acids</td>
<td>50</td>
</tr>
<tr>
<td>1.6</td>
<td>50</td>
</tr>
<tr>
<td>List of components and molecules in human breast milk and their action/role in immunity</td>
<td>61</td>
</tr>
<tr>
<td>1.7</td>
<td>61</td>
</tr>
<tr>
<td>List and percentage of fatty acids occurring in the human breast milk</td>
<td>63</td>
</tr>
<tr>
<td>1.8</td>
<td>63</td>
</tr>
<tr>
<td>The ingredients for TYI-S-33 growth medium for Giardia duodenalis</td>
<td>74</td>
</tr>
<tr>
<td>2.1</td>
<td>74</td>
</tr>
<tr>
<td>Tabular representation of the effect of hexadecanoic acid</td>
<td>81</td>
</tr>
<tr>
<td>2.2</td>
<td>81</td>
</tr>
<tr>
<td>Tabular representation of the effect of decanoic acid</td>
<td>82</td>
</tr>
<tr>
<td>2.3</td>
<td>82</td>
</tr>
<tr>
<td>Tabular representation of the effect of octanoic acid</td>
<td>83</td>
</tr>
<tr>
<td>2.4</td>
<td>83</td>
</tr>
<tr>
<td>Tabular representation of the effect of dodecanoic acid</td>
<td>84</td>
</tr>
<tr>
<td>2.5</td>
<td>84</td>
</tr>
<tr>
<td>Tabular representation of the effect of metronidazole</td>
<td>86</td>
</tr>
<tr>
<td>2.6</td>
<td>86</td>
</tr>
<tr>
<td>Observations of trophozoites incubated in medium containing 100µg/ml of BODIPY-labelled dodecanoic acid.</td>
<td>90</td>
</tr>
<tr>
<td>2.7</td>
<td>90</td>
</tr>
<tr>
<td>Some examples of animal models used to study the pathogenesis of giardiasis in mammals</td>
<td>112</td>
</tr>
<tr>
<td>3.1</td>
<td>112</td>
</tr>
<tr>
<td>(a) The categorization of the student population with the sex ratio and the analysis of the number of male and female children tested positive for the presence of one or more parasites in the rural area and (b) table of the intestinal parasite species which were</td>
<td>154</td>
</tr>
<tr>
<td>5.1</td>
<td>154</td>
</tr>
</tbody>
</table>
identified in children from the rural area.

(a) The categorization of the student population with the sex ratio and the analysis of the number of male and female children tested positive for the presence of one or more parasites in the urban area and (b) table of the intestinal parasite species which were identified in children from the urban area.

Sub-groupings of the student population with regard to sex ratio and the analysis of the number of male and female children positive for the presence of one or more parasites

6.1 Dosage regimes for treatment groups

6.2 List of the total populations of study participants in the research sites within three states and six districts of India.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Diagrammatic representation of the three morphological types of Giardia viewed under light microscopy</td>
</tr>
<tr>
<td>1.2</td>
<td>The life-cycle of Giardia species</td>
</tr>
<tr>
<td>1.3</td>
<td>The morphological structure of the Giardia duodenalis trophozoite</td>
</tr>
<tr>
<td>1.4</td>
<td>Morphological ultra-structure of the Giardia duodenalis cyst</td>
</tr>
<tr>
<td>1.5</td>
<td>Structures of the drugs commonly used to treat giardiasis</td>
</tr>
<tr>
<td>1.6</td>
<td>Actions of nitroimidazoles</td>
</tr>
<tr>
<td>1.7</td>
<td>Confocal microscopy showing characteristic localization of various phospholipids (glycerophospholipids) in Giardia trophozoites</td>
</tr>
<tr>
<td>1.8</td>
<td>Proposed pathway for the incorporation of free fatty acids into giardial phospholipids</td>
</tr>
<tr>
<td>1.9</td>
<td>Fatty acid remodeling of phospholipids by conjugated fatty acids</td>
</tr>
<tr>
<td>1.10</td>
<td>A general view of the deacylation/reacylation reactions of phospholipids in eukaryotic cells</td>
</tr>
<tr>
<td>1.11</td>
<td>The structure of a saturated fatty acid showing no double bonds in the carbon skeleton and the attachment of the hydrocarbon to the carboxyl group</td>
</tr>
<tr>
<td>1.12</td>
<td>The structure of a triglyceride showing fatty acids with the ester linkages</td>
</tr>
<tr>
<td>1.13</td>
<td>The different structural formats for the molecular formula of dodecanoic acid</td>
</tr>
<tr>
<td>1.14</td>
<td>Biological overview of fatty acid consumption, digestion and metabolism in the human stomach and intestines</td>
</tr>
<tr>
<td>1.15</td>
<td>Lipolysis in humans</td>
</tr>
<tr>
<td>1.16</td>
<td>The four steps involved in β-oxidation or lipolysis in mammalian physiology</td>
</tr>
<tr>
<td>1.17</td>
<td>Metabolic interrelationships of FAs in human</td>
</tr>
</tbody>
</table>
| 2.1 | The chemical structure of the fluorescently-tagged (BODIPY)
dodecanoic acid

2.2 The chemical structure of the fluorescently-tagged (BODIPY) palmitic acid

2.3 The structural formats for the molecular formula of MCSFAs employed in this study

2.4 Graphical representation of the effect of hexadecanoic acid on *Giardia duodenalis* trophozoites

2.5 Graphical representation of the effect of decanoic acid on *Giardia duodenalis* trophozoites

2.6 Graphical representation of the effect of octanoic acid on *Giardia duodenalis* trophozoites

2.7 Graphical representation of the effect of dodecanoic acid on *Giardia duodenalis* trophozoites

2.8 Dose response curve of dodecanoic acid on *Giardia duodenalis* trophozoites.

2.9 Graphical representation of the effect of metronidazole on *Giardia duodenalis* trophozoites

2.10 Dose response curve of metronidazole on *Giardia duodenalis* trophozoites.

2.11 Negative control trophozoites incubated in 1% DMSO in TYI-S-33 medium for 15 minutes;

2.12 Treated trophozoites incubated in 100µg/ml dodecanoic acid in 1% DMSO in TYI-S-33 medium for 15 minutes

2.13 Treated trophozoites incubated in 100µg/ml palmitic acid in 1% DMSO in TYI-S-33 medium for 15 minutes

2.14 Negative control samples of trophozoites treated with 1% DMSO for 15 minutes;

2.15 Trophozoites treated with 100µg/ml of BODIPY-labelled dodecanoic acid for 15 minutes

2.16 Accumulation of BODIPY- labelled dodecanoic acid in trophozoites

2.17 Cytoplasmic expulsion (arrowed) was observed after treatment with 100µg/ml of dodecanoic acid for 3 hours

2.18 Cytoplasmic expulsion (arrowed) was observed after treatment with 100µg/ml of dodecanoic acid for 3 hours

2.19 Trophozoites treated with 100 µg/ml of dodecanoic acid

XVIII
2.20 Trophozoites treated with 100µg/ml of BODIPY-labelled hexadecanoic (palmitic) acid for 15 minutes

2.21 Accumulation of BODIPY- labelled hexadecanoic (palmitic) acid

2.22 Negative control trophozoites treated with only 1%DMSO in TYI-S-33 medium for 15 minutes

2.23 Trophozoites treated with 100µg/ml of dodecanoic acid for 15 minutes

2.24 Progression of cytotoxic effects of 100µg/ml of dodecanoic acid on trophozoites for a progressive time range of 15 minutes to 4 hours

2.25 Trophozoite lysis was observed after treatment with 100µg/ml of dodecanoic acid even after a period as short as 15 minutes

2.26 Trophozoite lysis occurred despite attempted replication by the parasite

2.27 TEM micrographs of a negative control trophozoite after treatment with 1%DMSO for 15 minutes

2.28 TEM micrographs of a negative control trophozoite after treatment with 1%DMSO for 15 minutes

2.29 TEM micrographs of a negative control trophozoite after treatment with 1%DMSO for 15 minutes

2.30 TEM micrographs of a trophozoite treated with 100µg/ml of dodecanoic acid for 15 minutes

2.31 TEM micrographs showing the accumulation of dodecanoic acid within the cytoplasm of the trophozoite.

2.32 TEM micrographs showing the accumulation of dodecanoic acid within dorsal surface vesicles of a trophozoite

2.33 TEM micrographs of the accumulation of dodecanoic acid within dorsal surface vesicles

2.34 TEM observation of the cell disorganisation and loss of trophozoite morphology due to the effects of dodecanoic acid

3.1 Scanning electron micrographs of modified spongin scaffold

3.2 Scanning electron micrographs of modified spongin scaffold with CaCo2 cells grown for 14 days

3.3 Scanning electron micrographs of modified spongin scaffold

XIX
scaffold with CaCo2 cells grown for 14 days and then inoculated with *Giardia duodenalis* trophozoites for 3 hours;

3.4 Scanning electron micrographs of spongin scaffold with CaCo2 cells grown 14 days and inoculated with *Giardia duodenalis* trophozoites for 3 hours

3.5 Scanning electron micrographs of modified spongin scaffold with CaCo2 cells grown for 14 days and then inoculated with *Giardia duodenalis* trophozoites for 12 hours

4.1 Mean total parasite burdens in pups at 6 days post-inoculation

5.1 The buildings and environmental conditions surrounding the urban primary school involved in this study

5.2 The buildings and environmental conditions surrounding the rural primary school involved in this study

5.3 The percentage distribution of positive vs. negative samples for parasitic infestation in rural and urban areas

5.4 The sex ratio of participants positive for presence of one or more intestinal parasites in the rural and urban location

5.5 The percentage distribution of parasitic infestation in (a) rural (b) urban areas.

5.6 Comparative prevalences of specific parasites in designated age groups of school children in rural and urban areas.

5.7 Castor oil plant

5.8 Neem tree

6.1 Red Hills (Puzhal) Lake and Ponneri Lake.

6.2 Images showing the area surrounding the Thiruvallur rural populations

6.3 Prevalence of specific parasitic infections as a percentage in school children (overall n=42) (Sex ratio: female only) (Age range: (4-16 yrs) in the Alamadhi Girls Home School, within the Thiruvallur District, Tamil Nadu.

6.4 Boys from the Alamadhi Home playing in the open fields and riding their bike.
6.5 Prevalence of specific parasitic infections as a percentage in school children (overall n=36) (Sex ratio: male only) Age range: 4-16 yrs) in the Alamadi Boys Home, within the Thiruvallur District, Tamil Nadu.

6.6 Images showing the area surrounding the rural populations

6.7 Prevalence of specific parasitic infections as a percentage in school children (overall n=48) (Sex ratio: female) (Age range: 7-15 yrs) in The “Home” at Thirunindravur, within the Thiruvallur District, Tamil Nadu.

6.8 Images showing the local abattoir and butchery in the rural area;

6.9 Prevalence of specific parasitic infections as a percentage in school children (overall n=34; sex ratio: 5 male and 29 female; Age range: 3-13 yrs) in The “Home” at Thiruvottiyur, within the Thiruvallur District, Tamil Nadu.

6.10 Prevalence of specific parasitic infections as a percentage in school children (overall n=35) (Sex ratio: 13 male: 22 female) (Age range: 4-13 yrs) in The “Home” 25 at Thirunindravur, within the Thiruvallur District, Tamil Nadu.

6.11 Images of the Kancheepuram District;

6.12 Prevalence of specific parasitic infections as a percentage in school children (overall n=42) (Sex ratio: 19 male and 23 female) (Age range: 4-13 yrs) in the “Home” at Pallikaranai, within the Kancheepuram District, Tamil Nadu.

6.13 Prevalence of specific parasitic infections as a percentage in school children (overall n=48) (Sex ratio male only) (Age range: 4-13 yrs) in the “Home” at Tambaram, in the Kancheepuram District, Tamil Nadu.

6.14 Images showing flood waters and sewage overflow that occurs regularly in the local area surrounding the Home at Perungalathur

6.15 Prevalence of specific parasitic infections as a percentage in school children (overall n=27) (Sex ratio: 17 male and 10 female) (Age range: 9-12 yrs) in the “Home” at Perungalathur, in the Kancheepuram District, Tamil Nadu.
6.16 Images showing the female participant population at school within the “Girls Home” at Thoraipakkam

6.17 Prevalence of specific parasitic infections as a percentage in school children (overall n=83) (Sex ratio female only) (Age range: 5-14 yrs) in the Thoraipakkam Girls Home, in the Kancheepuram District, Tamil Nadu.

6.18 Prevalence of specific parasitic infections as a percentage in school children (overall n=120) (Sex ratio: male only) (Age range: 5-14 yrs) in the Thoraipakkam Boys Home, in the Kancheepuram District, Tamil Nadu.

6.19 Prevalence of specific parasitic infections as a percentage in school children (overall n=34) (sex ratio: male 14: female 20) (Age range: 5-14 yrs) in the Thoraipakkam 14 Home, in the Kancheepuram District, Tamil Nadu.

6.20 Images showing the area of Maraimalar Nagar in which experimental participants resided.

6.21 Prevalence of specific parasitic infections as a percentage in school children (overall n=35) (Sex ratio: male) (Age range: 5-13 yrs) in The Maraimalar Nagar population, within the Kancheepuram District, Tamil Nadu.

6.22 Images showing typical scenes in Chennai City

6.23 Prevalence of specific parasitic infections as a percentage in school children (overall n=37) (Sex ratio: female only) (Age range: 5-15 yrs) in The Robinson School and Boarding facility in Chennai City, Tamil Nadu.

6.24 The street food stalls and vendors in Chennai City

6.35 Prevalence of specific parasitic infections as a percentage in school children (overall n=115) (sex ratio male 83: female 32) (Age range: 4-14 yrs) in Ayappanthangal Home in Chennai City, Tamil Nadu.

6.26 Figure 6.26: Prevalence of specific parasitic infections as a percentage in school children (overall n=39) (sex ratio male 15: female 24) (Age range: 4-14 yrs) in the ADI Home 44 in Chennai City, Tamil Nadu.

6.27 Examples of water tankers supplying water in Chennai City

XXII
6.28 Prevalence of specific parasitic infections as a percentage in school children (overall n=43) (Sex ratio: male 23: female 20) (Age range: 4-13 yrs) in The Home at Kaatukuppam in Chennai City, Tamil Nadu.

6.29 Images showing the research site of Paraniputhur in Chennai City

6.30 Prevalence of specific parasitic infections as a percentage in school children (overall n=23) (Sex ratio: male 11: female 12) (Age range: 2-14 yrs) in the community at Paraniputhur in Chennai City, Tamil Nadu.

6.31 Images of the area within the suburbs of Porur, the local fish market

6.32 Prevalence of specific parasitic infections as a percentage in school children (overall n=107) (Sex ratio: male 28: female 79) (Age range: 2-14 yrs) in The School and Boarding Facility at Porur in Chennai City, Tamil Nadu.

6.33 Irenipuram Village in Kanyakumari, Tamil Nadu

6.34 Prevalence of specific parasitic infections as a percentage in school children (overall n=66) (Sex ratio: 32 female: 34 Male) (Age range: 5-15 yrs) in The School for the Blind, Irenipuram, Kanyakumari District, Tamil Nadu.

6.35 Area surrounding the Home research site in Pune District, Maharashtra, India

6.36 The common kitchen at the Home in Pune, Maharashtra, India

6.37 Animals and poultry within the vicinity of the Home population in Pune District, Maharashtra, India;

6.38 The well that supplied drinking water to the Home, study population in Pune, Maharashtra, India

6.39 Prevalence of specific parasitic infections as a percentage in female school children (overall n=47) (Age range: 4-13 yrs) in the “Home” at Kedgaon within the Pune District, Maharashtra

6.40 The district of Ernakulam in the state of Kerala, India

6.41 The district of Ernakulum in the state of Kerala, India;

6.42 Prevalence of specific parasitic infections as a percentage in school children (overall n=77) (Sex ratio: male 39: female 38) (Age range: 2-14 yrs) in Ernakulam, Kerala, India;
38) (Age range: 4-13 yrs) in Ernakulam District, Kerala.

6.43 Overall prevalence of specific parasitic infections as a percentage in the study populations in the rural and urban areas (rural n=733; urban n=114) of India

6.44 Overall prevalence of specific parasitic infections as a percentage in the study populations in rural and urban school children (rural n=316; urban n=64) in India

6.45 Overall prevalence of specific parasitic infections as a percentage in rural vs. urban school children (rural n=108; urban n=80) in India. These populations received 20mls of gingellee oil as an oral daily supplement for 7 days.

6.46 Overall prevalence of specific parasitic infections as a percentage in rural and urban school children (rural n=107; urban n=79) in India. These populations received 10gms of Monolaurin as an oral daily Supplement for 7 days.

6.47 The geographical location of the negative control population, and the occurrences of parasite (helminths and protozoa) species in the rural District of Thiruvallur, in Tamil Nadu, India

6.48 The geographical location of the negative control population, and the occurrences of parasite (helmets and protozoa) species in the rural District of Kancheepuram, in Tamil Nadu, India; Note: Each coloured dot represents an individual parasite

6.49 The geographical location of the negative control population, and the occurrences of parasite (helminths and protozoa) species in the urban, Metropolitan District of Chennai, in Tamil Nadu, India

6.50 The geographical location of the negative control population, and the occurrences of parasite (helminths and protozoa) species in the rural District of Kanyakumari, in Tamil Nadu, India

6.51 The geographical location of the negative control population, and the occurrences of parasite (helminths and protozoa) species in the rural District of Ernakulam, in Kerala, India

6.52 The geographical location of the negative control population,
and the occurrences of parasite (helminths and protozoa) species in the rural District of Ernakulam, in Kerala, India

6.53 Overall prevalence of \textit{G. duodenalis} as a percentage in the study populations in the rural and urban areas (rural \(n=768 \); urban \(n=364 \)) of India

6.54 Overall prevalence of \textit{E. histolytica} as a percentage in the study populations in the rural and urban areas (rural \(n=768 \); urban \(n=364 \)) of India;

6.55 Overall prevalence of \textit{A. duodenale} as a percentage in the study populations in the rural and urban areas (rural \(n=768 \); urban \(n=364 \)) of India;

6.56 Overall prevalence of \textit{A. lumbricoides} as a percentage in the study populations in the rural and urban areas (rural \(n=768 \); urban \(n=364 \)) of India;

6.57 Overall prevalence of \textit{E. vermicularis} as a percentage in the study populations in the rural and urban areas (rural \(n=768 \); urban \(n=364 \)) of India;

6.58 Overall prevalence of \textit{T. trichura} as a percentage in the study populations in the rural and urban areas (rural \(n=768 \); urban \(n=364 \)) of India;

6.59 Overall prevalence of \textit{H. nana} as a percentage in the study populations in the rural and urban areas (rural \(n=768 \); urban \(n=364 \)) of India;

6.60 Overall prevalence of \textit{Taenia} spp. as a percentage in the study populations in the rural and urban areas (rural \(n=768 \); urban \(n=364 \)) of India;
List of Abbreviations

- AIDS Acquired Immune Deficiency Syndrome
- ASTM American Society for Testing and Materials
- BODIPY 4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene
- °C Degree Centigrade
- DA Dodecanoic acid
- DMSO Dimethyl sulphoxide
- CoA Coenzyme A
- DNA Deoxyribonucleic acid
- ECM Extracellular Matrix
- EILISA Enzyme-linked immunosorbent assay
- EPA Environmental Protection Agency
- ER Endoplasmic reticulum
- ESV Encystation-specific vesicles
- FA Fatty acid
- GalNAc N-acetylgalactosamine
- GlcNAc N-acetylglucosamine
- GPL Glycerophospholipid
- g or gm Grams
- g Acceleration due to gravity
- IC_{50} Inhibitory concentration
- LD_{50} Lethal dose
- LDL Low density lipoprotein
- LPL Lysophospholipids
- MCSFA Medium-chain saturated fatty acid
- MG Monoglycerides
- mg Milligrams
- mls Millilitres
- MUFA Monounsaturated fatty acid
- PC Phosphatidylcholine
- PCR Polymerase Chain Reaction
- pi Post inoculation
- PLA_{1} Phospholipase A_{1}
- PLA_{2} Phospholipase A_{2}
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtdyGly</td>
<td>Phosphatidylglycerol</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>rRNA</td>
<td>Ribosomal ribonucleic acid</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscopy</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission electron microscopy</td>
</tr>
<tr>
<td>T₁/₂</td>
<td>Half-life time period</td>
</tr>
<tr>
<td>TYI-S-33</td>
<td>Tryptone yeast iron-S-33</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipoprotein</td>
</tr>
<tr>
<td>VSP</td>
<td>Variant surface protein</td>
</tr>
<tr>
<td>x</td>
<td>Times (multiplied by)</td>
</tr>
</tbody>
</table>