Activated sludge bioassays for rapid biochemical oxygen demand.

A dissertation submitted in fulfillment of the requirements for the degree of
Doctor of Philosophy

Mark A. Jordan
B.Sc (Hons)

Griffith School of Environment
Faculty of Science, Environment, Engineering & Technology
Griffith University, Australia

January 2015
For Jimi and Charlie,
Shine on you crazy diamonds.
- C. Montgomery Burns
Acknowledgements

As is customary and with good reason, my supervisors are thanked first. Professor Richard John was instrumental initially, particularly with securing ARC funding for the project, which of course wouldn’t have happened otherwise. He was also a valuable source of experience in the first half of the study, but it was principally my other two supervisors, Assoc. Professor Dave Welsh and Professor Pete Teasdale who helped shape the project into a PhD. These guys were not only unfailingly approachable and knowledgeable but also two of very few who actually tried to help me through some of the significant personal issues that also arose during my candidature. I am very grateful.

Thanks of course must go to my fellow colleagues in the School of Environment, but some need to be singled out. Certainly more cursing would have been involved with manuscript preparation if I didn’t share an office with Will, the resident and always smiling computer geek. Probably less cursing would have been involved if I didn’t share an office with Kris, but I wouldn’t have it any other way. Many thanks also to some of the more random lab and office mates who provided me with much enjoyment and a firm sense of the diversity of life… Rusty and Calvin, I thank you.

Of course there is a bunch of other workmates whose time I have greatly valued, either for giving me a chuckle or help with a project or both. Thank you Dave R, Sian, Ari, Mariel and Ryan. Davo, Hutcho and Dunsta deserve special mention: they’re all quite different people but never have I met such pleasant units in my life.

This project would not have been possible without the funding and logistical support of Gold Coast Water. It was certainly beneficial that the council chiefs signing off on logistical aspects of the project were so helpful, thank you Paul, Jennifer, Kel and Kylie. Many thanks must also go to all of the Gold Coast Water, Logan and Redland Shire plant staff, lab staff and field staff for giving me their time and making sample collection such a smooth process. Special mention to the always chipper Product Quality and Scientific Services guys.

Finally I would like to thank my family and my ex-missus Tanya. You were very patient, thank you.
Statement of Originality

The material in this thesis has not previously been submitted for a degree in any University, and to the best of my knowledge contains no material previously published or written by another person except where due acknowledgement is made in the thesis itself.

Mark A. Jordan

January 2015
Publications

This thesis consists of 3 published manuscripts, as Chapters 3, 4 and 5, which are co-authored with fellow researchers. My contribution to each co-authored paper is outlined at the front of each relevant chapter.

Chapter 5: Jordan MA, Welsh DT, Teasdale PR, Ubiquity of activated sludge ferricyanide-mediated BOD methods: a comparison of sludge seeds across wastewater treatment plants, *Talanta* 2014, **125**, 293-300.
Abstract

A number of recent studies have described new rapid biochemical oxygen demand (BOD) methods. However, most have not maintained the features that make the 5-day standard BOD assay particularly relevant to wastewater management – a high level of substrate bio-oxidation and use of wastewater treatment plant (WWTP) sludge as the biocatalyst. In a critical breakthrough, return activated sludge (RAS) from Coombabah WWTP, southeast Queensland, was successfully incorporated as the biocatalyst in a ferricyanide mediated-BOD (FM-BOD) bioassay. The bioassay was initially optimized for the measurement of highly variable and complex wastewaters, particularly trade wastes, by maximizing the analytical working range (10 – 170 mg BOD\textsubscript{5} L-1) and extent of substrate degradation (96 ± 23% of measured BOD\textsubscript{5} oxidation). A highly significant correlation (n = 35; slope = 1.07; R = 0.95; incubation time = 6 h) was found between this RAS FM-BOD and standard BOD\textsubscript{5} assays using a range of real trade waste samples.

The activated sludge FM-BOD bioassay was re-examined with the goal of measuring low–mid range wastewaters (i.e. treated effluents and WWTP influents) that comprise the bulk of all BOD samples analyzed worldwide. All experimental parameters were re-optimized, primarily to improve the detection limit of the FM-BOD assay to approximate that of the standard BOD\textsubscript{5} assay (i.e. ≈2 mg BOD\textsubscript{5} L-1). Primary influent sludge (PIS) from Coombabah WWTP was the most favorable sludge trialed, with the new bioassay having an analytical range of 2 – 40 mg BOD\textsubscript{5} L-1. A highly significant correlation (n = 33; slope = 0.94; R = 0.96; incubation time = 3 – 4 h) was observed between the PIS FM-BOD and standard BOD\textsubscript{5} assays using a range of treated effluent, influent and grey water samples.

The industry-wide applicability of the new FM-BOD assays was investigated using activated sludge seeds from 11 diverse WWTPs in southeast Queensland. FM-respiration was proportional to substrate concentration for BOD standards and in most cases linear, particularly for the PIS FM-BOD assay. This demonstrated that the new FM-BOD assays can be seeded with activated sludge sourced from any WWTP, with very little modification, as the standard BOD\textsubscript{5} method can be. FM-respiration of real samples was calibrated with standard solutions using several different FM-BOD and BOD\textsubscript{5} sludge seeds in parallel; mean FM-BOD and mean BOD\textsubscript{5} concentrations compared very well. These results have confirmed that both FM-BOD assays may be applied widely throughout the wastewater industry.
The use of activated sludge with the previously developed FM-Tox assay was also investigated. Activated sludge IC\textsubscript{50} values for all inorganic toxicants studied compared very well with values from the research literature. Difficulties arose however when evaluating organic toxicants. In their presence, an unknown non-respiratory mechanism also produced an analytical response, thus masking any toxic effect. However, the toxicity of the organic toxicants was confirmed for the same sludge community using standard oxygen based respiration bioassays. Glutathione was investigated as a non-respiratory redox compound that is known to reduce ferricyanide. This was confirmed experimentally, however appreciable concentrations of glutathione were not recorded in activated sludge. These results require further investigation.

The RAS and PIS FM-BOD assays described above have demonstrated that in conjunction they may be used for simple, same-day BOD analysis of all typical wastewaters analyzed for BOD. At present the BOD\textsubscript{5} standard assay is the only recognized measure of BOD worldwide and as such the industry potential of the new FM-BOD assays is huge; this was demonstrated clearly by the successful use of sludge from 11 different WWTPs with both FM-BOD assays.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Ampere</td>
</tr>
<tr>
<td>ADS</td>
<td>Aerobic digester sludge</td>
</tr>
<tr>
<td>APHA</td>
<td>American Public Health Association</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical oxygen demand</td>
</tr>
<tr>
<td>BOD<sub>5</sub></td>
<td>5-day Biochemical oxygen demand assay</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>d</td>
<td>Day</td>
</tr>
<tr>
<td>3,5-DCP</td>
<td>3,5-Dichlorophenol</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved oxygen</td>
</tr>
<tr>
<td>E</td>
<td>Potential</td>
</tr>
<tr>
<td>E<sub>0</sub></td>
<td>Standard reduction potential</td>
</tr>
<tr>
<td>E<sub>app</sub></td>
<td>Applied potential</td>
</tr>
<tr>
<td>ETS</td>
<td>Electron transport system</td>
</tr>
<tr>
<td>FADH<sub>2</sub></td>
<td>Flavine adenine dinucleotide</td>
</tr>
<tr>
<td>F:M</td>
<td>Food-microorganism-ratio</td>
</tr>
<tr>
<td>FM</td>
<td>Ferricyanide mediated</td>
</tr>
<tr>
<td>FM-BOD</td>
<td>Ferricyanide mediated biochemical oxygen demand</td>
</tr>
<tr>
<td>FM-Tox</td>
<td>Ferricyanide mediated toxicity</td>
</tr>
<tr>
<td>GGA</td>
<td>Glucose/glutamic acid</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GSSG</td>
<td>Glutathione disulfide</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>HACCP</td>
<td>Hazard analysis and critical control points</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic retention time</td>
</tr>
<tr>
<td>i</td>
<td>Current</td>
</tr>
<tr>
<td>i<sub>lim</sub></td>
<td>Diffusion limiting current</td>
</tr>
<tr>
<td>IC<sub>20</sub></td>
<td>Concentration causing 20% inhibition of the test population</td>
</tr>
<tr>
<td>IC<sub>50</sub></td>
<td>Concentration causing 50% inhibition of the test population</td>
</tr>
<tr>
<td>IC<sub>80</sub></td>
<td>Concentration causing 80% inhibition of the test population</td>
</tr>
</tbody>
</table>
LC₅₀ Concentration causing 50% mortality of the test population
LOD Limit of detection
LOEC Lowest observable effect concentration
m Milli (prefix)
M Molar concentration
ML Mixed liquor
MLSS Mixed liquor suspended solids
MLVSS Mixed liquor volatile suspended solids
NADH Nicotinamide adenine dinucleotide
n Nano (prefix)
NOEC No observable effect concentration
OD Optical density
OECD Organization for Economic Cooperation and Development
PB Phosphate buffer
PIS Primary influent sludge
R Correlation coefficient
RAS Return activated sludge
rcf Relative centrifugal force
S Standard deviation
SDS Sodium dodecyl sulfate
SSVI Stirred settled volume index
SVI Sludge volume index
TCA Tricarboxylic acid
TOC Total organic carbon
UEWD Upset early warning device
µ Micro (prefix)
V Volt(s)
WWTP Wastewater treatment plant
Table of Contents

Chapter 1
Introduction ... 1
1.1 Effects of sewage pollution ... 2
1.2 Activated sludge secondary wastewater treatment 6
1.2.1 Activated sludge ecology .. 9
1.3 Biochemical oxygen demand .. 11
1.3.1 BOD₅ standard method ... 14
1.3.2 Methods of BOD prediction for high-throughput analysis 16
1.4 Wastewater toxicity ... 19
1.4.1 Traditional aquatic toxicity bioassays .. 20
1.4.2 Microbial toxicity bioassays ... 23
1.5 Significance of rapid activated sludge bioassays for wastewater BOD and toxicity analysis ... 24
1.6 Ferricyanide-mediated microbial reactions ... 26
1.6.1 Ferricyanide-mediated biochemical oxygen demand 27
1.6.1.1 Optimization of the FM-BOD assay ... 29
1.6.1.2 Optimization of the biocatalyst ... 31
1.6.1.3 Commercialization of the FM-BOD assay 32
1.6.2 Ferricyanide-mediated toxicity ... 33
1.7 Objectives .. 35
1.8 References ... 37

Chapter 2
Methods and analysis .. 51
2.1 Reagents and UV instrumentation .. 52
2.2 Coombabah WWTP activated sludge seeds .. 53
2.3 Dynamic electrochemistry .. 53
2.3.1 Dynamic electrochemistry at microelectrodes 54
2.3.1.1 Chronoamperometry .. 55
2.4 Analysis ... 57
2.4.1 Determination of microbially produced ferrocyanide 57
2.4.2 Statistical analysis .. 57
2.5 References ... 58
Chapter 3 A ferricyanide-mediated activated sludge bioassay for fast determination of the biochemical oxygen demand of wastewaters. ... 61

Chapter 4 A sensitive ferricyanide-mediated biochemical oxygen demand assay for analysis of wastewater treatment plant influents and treated effluents. ... 73

Chapter 5 Ubiquity of activated sludge ferricyanide-mediated BOD methods: a comparison of sludge seeds across wastewater treatment plants. 85

Chapter 6 Evaluating activated sludge as a biocatalyst for the rapid FM-Tox bioassay .. 97
6.1 Abstract.. 98
6.2 Introduction ... 99
6.3 Methods .. 100
6.3.1 Reagents ... 100
6.3.2 Activated sludge preparation ... 100
6.3.3 Sample preparation and analysis .. 101
6.3.4 FM-Tox IC_{50} values .. 101
6.3.5 OECD respiration inhibition assay ... 102
6.4 Results & discussion .. 103
6.4.1 Microbial concentration ... 103
6.4.2 FM-Tox IC_{50} values .. 104
6.4.3 3,5-DCP investigations ... 107
6.4.4 Hydrophobic toxicants ... 110
6.4.5 Non-respiratory reduction of ferricyanide .. 111
6.5 Conclusions ... 113
6.6 References ... 114

Chapter 7 General conclusions .. 119
7.1 Conclusions ... 120
7.2 Future work ... 121
7.3 References ... 122

Chapter 8 Appendix I .. 125

Chapter 9 Appendix II .. 135