Web-based Universal Micropayment System
A Service-oriented Design Using Enterprise Architecture Approach

Xiang Shao
Bachelor of Information Technology (Honours)

School of Information and Communication Technology
Science, Environment, Engineering and Technology
Griffith University

Submitted in fulfilment of the requirements of the degree of
Doctor of Philosophy

December 2009
Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Signed:

Date:
Abstract

The e-commerce of low-value online content, like music and videos, has generated considerable revenues worldwide over the past few years, and the market for these micropayments is expected to continue to grow substantially. To allow ‘pay-per-use’ for such content, Micropayment Systems (MPSs) are playing an important role.

Research on MPSs began along with the Internet boom a decade ago, when a number of trial systems appeared, but none achieved great successes. The main reason for the failures was not the limitation of the technologies involved, but user resistance: people had simply been used to getting online content for free. In addition, the transaction costs were rather too high.

The second wave of MPS developments occurred during recent years, when online content available for a small charge became quite popular on the Internet. Many systems dedicated to processing micropayment transactions on the Web emerged, such as PepperCoin, BitPass, ClickandBuy, etc. However, no single system has yet gained wide acceptance among online merchants and consumers, due to the fact that most systems are running locally with limited user base. The current situation has resulted in many problems because various MPSs are concurrently used and competing with each other on the Internet market. Accordingly, recent research efforts in this area have tended to shift towards social and human, rather than technical, issues.
One of the main problems encountered in current micropayment practice on the Internet is that both merchants and consumers are forced to use multiple systems, manage multiple accounts and trust different system operators. In this study, a possible approach to overcome this problem is proposed. It involves a Universal Micropayment System (UMS), which would incorporate the various MPSs, allowing users (both merchants and customers) to use the systems of their choice without the need for multiple accounts or having to change their habits. The main objective of the research is to design and develop the UMS architecture for universal payments, in terms of functionality and payment protocol, allowing the existing MPSs to comply with it without changing their original functionalities.

In order to achieve this objective, an Enterprise Architecture (EA) approach was adopted as the design principle to guide the process of dealing with system requirements, conceptual framework, implementation and measurements. The EA approach was further segmented into three levels – enterprise viewpoint, business viewpoint and solution viewpoint. In the process, three major questions emerged:

1. What system is required?
2. What should the system look like?
3. How to develop the system and measure its performance?

To address these three questions, further detailed approaches – such as a strategic approach for requirement identification, a service-oriented approach for the system design, and a case study approach for system development – were adopted and developed.
The outcome of this research may contribute to the development of system integrations and future design of MPSs. The core element of the design of the proposed UMS is a generic and systematic interconnection approach to enable cross-system interactions among the existing MPSs. It determines an optimised method of integrating the payment services of these systems into a universal level by standardising multiple payment interactions. The service-oriented design of the UMS architecture and protocol ensures high scalability and system compatibility, and may make it acceptable to a wide range of users.

The proposed system also enables protected data exchange at universal transactions and minimises security and related threats for both users and system brokers without overhead computational burden and significant time lag for cross-system payments. The lightweight design of universal payment service allows the participating MPSs to comply with this service without changing their local functionalities and users’ payment habits. Furthermore, the implementation of the proposed UMS and its protocol demonstrates the achievability of a universal micropayment system. Consequently, the conceptual design of the UMS and its services may promote the development of Internet commerce involving micropayments by means of simple, low cost, secure and efficient universal payment portal and protocol.
Table of Contents

Abstract i
Table of Contents iii
Table of Figures viii
List of Tables ix
Acronyms x
Acknowledgements xi

Chapter 1 Introduction
1.1 Background of the research
1.1.1 Online paid content: subscription vs micropayment
1.1.2 Current and potential markets for low-value content with micropayment
1.1.3 Micropayment system (MPS) in general
1.2 Current MPS issues and desired solutions
1.3 Objectives and research questions
1.4 Research design
1.5 Outline of the thesis
1.6 Chapter summary

Chapter 2 Literature review
Part 1: Overview of electronic payment systems
2.1 Terminology
2.1.1 Electronic money
2.1.2 Electronic payments
2.1.3 Electronic payment systems
2.1.4 Electronic payment service users
2.1.5 Electronic payment methods
2.2 Evolution of electronic payment systems
2.3 Characteristics of electronic payment systems
2.3.1 Business characteristics
2.3.2 Functional characteristics
2.4 Classification of electronic payment systems
2.4.1 Credit card systems
2.4.2 E-cash payment systems
2.4.3 Micropayment systems
2.5 Security and trust issue of electronic payment systems
2.5.1 Security issues
2.5.2 Trust issues

Part 2: Micropayment systems and related issues
2.6 Evolution of micropayment systems
2.7 Micropayment techniques and cryptography
2.7.1 Early adopted micropayment methods and techniques
2.7.2 Currently adopted micropayment methods and techniques
2.8 State-of-the-art micropayment systems
2.8.1 BitPass
2.8.2 PepperCoin
2.8.3 ClickandBuy
2.8.4 Wallie
2.8.5 PayPal

2.9 Summary and analysis
2.9.1 Summary of business roles and functional characteristics
2.9.2 Analysis of functional characteristics

2.10 Chapter summary

Chapter 3 Research methodology
3.1 Enterprise Architecture (EA) approach
3.1.1 EA framework
3.1.2 How EA approach works in this research

3.2 Current issues and desired micropayment environment
3.2.1 Current situation of MPS
3.2.2 Problem statement
3.2.3 Desired micropayment environment

3.3 An analysis of system design approaches
3.3.1 Market-driven approach
3.3.2 Service-oriented approach
3.3.3 Outcomes of the determined approach

3.4 Approaches to system development
3.4.1 Approaches to system cooperation and integration
3.4.2 Approaches to system implementation and measurement

3.5 Design methodology
3.6 Chapter summary

Chapter 4 Requirements for Universal Micropayment System (UMS)
4.1 User requirements for UMS
4.1.1 A uniform payment platform
4.1.2 A user-friendly payment interface
4.1.3 A secure system
4.1.4 A trustworthy system
4.1.5 A system with anonymity and privacy

4.2 MSB requirements for UMS
4.2.1 Original system functionalities retained in place
4.2.2 Minimal modifications applied to existing systems
4.2.3 Comparability, reliability and scalability
4.2.4 Trust

4.3 Functional requirements for UMS
4.3.1 Access authentication
4.3.2 Payment initiation
4.3.3 Payment confirmation
4.3.4 Payment method

4.4 Chapter summary
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Revenues on micropayments for Internet and mobile digital content</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Research design</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Roles of users in e-payment systems</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Characterisation model for e-payment systems</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Pre-paid and post-paid systems</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>A classification schema of e-payment systems</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Micropayment environment</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Business model for micropayment systems</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>BitPass time sequence diagram</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>PepperCoin time sequence diagram</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>Wallie time sequence diagram</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>PayPal time sequence diagram</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Payment initiations</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Payment confirmations</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The life cycle of EA approach adopted in this study</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Enterprise Architecture levels</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Current situation of micropayment</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Desired micropayment environment from users’ perspectives</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>The new approach for incorporating existing MPSs</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>Health circle for expansion of user bases</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>Logical design process circle</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The requirements for UMS</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Interactions between UMS and incorporated MPSs</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Architecture of UMS with interior levels</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Universal Access Level</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Universal Transaction Level</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Payers and Payees in different MPSs</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Interaction flow of universal micropayment</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Universal micropayment interactions with associated parameters</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Protocol function sequence</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Swim Lane diagram for UMS protocol functions</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Demonstration of a universal micropayment</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Interaction flow between MPSs and UMS</td>
</tr>
<tr>
<td>Figure 7.3</td>
<td>Pre-payment messages exchanged between Webcoin and UMP</td>
</tr>
<tr>
<td>Figure 7.4</td>
<td>Universal micropayment interactions from Webcoin to NetPay via UMP</td>
</tr>
<tr>
<td>Figure 7.5</td>
<td>Function sequence of universal micropayment protocol</td>
</tr>
<tr>
<td>Figure 7.6</td>
<td>Parameters mapped in Webcoin</td>
</tr>
<tr>
<td>Figure 7.7</td>
<td>Parameters mapped in NetPay</td>
</tr>
</tbody>
</table>
List of Tables

Table 2.1 Examples of token and notation-based systems
Table 2.2 Examples of macro, mini and micro payment systems
Table 2.3 Examples of state-of-the-art e-payment systems
Table 2.4 Examples of credit card transaction fees
Table 2.5 Transaction value ranges of different payment categories
Table 2.6 Parameters of BitPass interactions
Table 2.7 Parameters of PepperCoin interactions
Table 2.8 Parameters of Wallie interactions
Table 2.9 Parameters of PayPal interactions
Table 2.10 Business and Functional characteristics
Table 2.11 Fee comparison of different systems
Table 4.1 Functional requirement list for UMS
Table 5.1 Traceability matrix to functional requirements
Table 5.2 Uni-Pay-Req parameters at UAL
Table 5.3 Denotation of the uniqueness of buyer and vendor’s ID within UMS
Table 5.4 Uni-Pay-Resp parameters at UAL
Table 5.5 Uni-Trans-Req parameters at UAL
Table 5.6 Uni-Trans-Resp parameters at UAL
Table 6.1 Debtor entity related parameters at UAL and UTL
Table 6.2 Creditor entity related parameters at UAL and UTL
Table 6.3 Property related parameters at UAL and UTL
Table 6.4 Token entity related parameters at UAL and UTL
Table 6.5 Reference entity related parameters at UAL and UTL
Table 6.6 Parameters stored in UMS database for each universal transaction
Table 6.7 Shape denotations for Swim Lane diagram
Table 6.8 List of protocol functions with section number
Table 6.9 Traceability matrix to functional requirements
Table 7.1 MPS table in UMS database
Table 7.2 Parameters from Webcoin to uni-Webcoin
Table 7.3 Parameters from uni-Webcoin to UMS
Table 7.4 Parameters from UMS to uni-NetPay
Table 7.5 Parameters from uni-NetPay to UMS
Table 7.6 The processed payment data recorded by UMS database
Table 7.7 Parameters for payment initiation of Webcoin
Table 7.8 Parameters for payment confirmation of Webcoin
Table 7.9 Parameters for payment initiation of NetPay
Table 7.10 Parameters for payment confirmation of NetPay
Acronyms

ATM Automated Teller Machine
B2C Business to Consumer
DES Data Encryption Standard
DEI Data Exchange Initiation
DEP Data Exchange Point
EA Enterprise Architecture
EFTPOS Electronic Funds Transfer at Point of Sale
HTTP HyperText Transfer Protocol
HTTPS Secure Hypertext Transfer Protocol
ID Identifier
ISP Internet Service Provider
iKP Internet Keyed Payment Protocol
MD5 Message Digest 5
MPS Micropayment System
MSB Micropayment System Broker
P2P Person-to-Person
PKI Public Key Infrastructure
RSA Rivest-Shamir-Adelman, a public key encryption algorithm
SET Secure Electronic Transaction
SHA Secure Hash Algorithm
SI Service Initiation
SSL Secure Socket Layer
TLS Transport Layer Security
TTP Trusted Third Party
UAL Universal Access Layer
UMP Universal Micropayment Portal
UMS Universal Micropayment System
Uni-Pay-Req Universal Payment Request
Uni-Pay-Resp Universal Payment Response
Uni-Trans-Req Universal Transaction Request
Uni-Trans-Resp Universal Transaction Response
Uni-Verif-Req Universal Verification Request
Uni-Verif-Resp Universal Verification Response
URL Universal Resource Locator
UTL Universal Transaction Layer
W3C World Wide Web Consortium
3W World Wide Web
Acknowledgements

I would like to thank all those who helped me during my study.

First of all, my deepest gratitude goes to my Supervisor, Dr. Ann Nguyen, whose constant guidance and encouragement have helped make the past four years a smooth and rewarding journey.

I am also indebted to the Griffith School of ICT for giving me the opportunity and APA Scholarship to commence the study in the first instance, and additional funding for attendance at various conferences and career development workshops.

Thanks are also due to my Associate Supervisors, Dr. Vallipuram Muthukumarasamy and Head of School, A/Prof. Michael Blumenstein, for their advice, research assistance and support throughout my whole journey of PhD study.

I cannot end without thanking all my family and friends, wherever they are. To my friends and fellow PhD students, I treasured all the precious moments we shared. To my family, I thank you for your love, support and sacrifice, upon which I relied throughout the study in Australia.