Behaviour and Health Risk Assessment of Endocrine Disrupting Chemicals from Wastewater

Qiming Cao

B. Eng., M. Eng. (Hons)

Submitted in fulfilment of the requirements of the degree of

Doctor of Philosophy

Griffith School of Engineering
Science, Environment, Engineering and Technology
Griffith University, Queensland, Australia

August 2010
Abstract

Water supply has become a social and economic issue in many countries as a result of global climate change, fast population growth, industrial and urban development. To address this issue, water recycling has been considered as a feasible technology to supplement the existing water supply. However, a major challenge with water recycling is the removal of harmful contaminants to meet drinking water guidelines and industrial requirements. Although various technologies can remove most contaminants efficiently, recent studies have shown that many endocrine disrupting chemicals (EDCs) can cause adverse health effects on wildlife species and humans at extremely low level.

EDCs from wastewater treatment effluent are the major point source entering the aquatic environment. Consequently, various adverse health effects have been observed in wildlife species, such as population changes, reproductive abnormalities, imbalanced sex ratios and behaviour changes. Many adverse human health effects such as prostate cancer, breast cancer and birth defects have also been implicated with the exposure to EDCs. Thus, it is important to study these environmental contaminants. The main aim of this work was to develop an understanding of the behaviour and health risks of EDCs from wastewater. This work focused on four estrogens, estrone (E1), 17β-estradiol (E2), estriol (E3), and 17α-ethinylestradiol (EE2) and three phenolic compounds, nonylphenol (NP), octylphenol (OP) and bisphenol A (BPA).

The behaviour of a chemical in the environment is largely dependent on its physicochemical properties such as aqueous solubility (S) and octanol-water partition coefficient (K_{ow}). Physicochemical properties, however, are related to chemical
structures. A quantitative structure-property relationship (QSPR) evaluation was conducted by using measured physicochemical properties and calculated molecular descriptors. With single and multiple linear regression methods, good linear relationships were found between the measured log K_{ow} values and three molecular descriptors: log FOSA (hydrophobic component of the total solvent accessible surface area), log FISA (hydrophilic component of the total solvent accessible surface area) and log PSA (Van de Waals surface area of polar nitrogen and oxygen atoms). Similar but weaker correlations were found between the measured log S values and each of the three molecular descriptors. The relationships can be used to obtain property values for various steroidal EDCs which may have potential environmental effects.

The behaviour of EDCs is also affected by some environmental parameters such as temperature, pH and equivalent biomass concentration (EBC). Several authors have noticed the effects of biomass concentration on degradation rate, but quantitative relationships have not been developed. So, this work conducted relationship studies between the measured degradation rate constants and EBC values. Simple linear regression indicated that the degradation rate constant generally increases with higher EBC values. Results showed that EE2 was most resistant to biodegradation, whilst E1 and E2 were relatively easily degraded at similar rates. The relationships obtained are useful for the prediction of the fate of steroidal EDCs in environmental media.

Often, the environmental fate of EDCs cannot be easily measured and mathematical simulation methods have to be used. A fugacity-based model was used to quantify the fate of E1, E2 and EE2 in a reservoir receiving recycled water in Queensland, Australia.
Under typical conditions, the simulated concentration in water after advanced water treatment were below 10^{-4} ng/L, implying negligible health risk when compared with no-observed-adverse-effects-concentration (NOAEC) for fish and Australia Public Health Standards (PHS) for humans. In addition, the simulated concentrations in water decreased when water temperature, reservoir water storage volume, EBC and reservoir water releasing rate increased. However the opposite trend was found with wastewater recycling rate and EDC concentration in the final recycled water.

To conduct health risk assessment for fish and humans, probabilistic techniques were used. A new risk characterisation method, the overall risk probability (ORP) was developed based on the cumulative probability distribution (CPD) of exposure and effect data. The ORP method obtained the same ranking of risk level for fish as the commonly used hazard quotient (HQ$_{95/5}$) method: EE2 (HQ$_{95/5}$, 250; ORP, 26.6%) > E1 (HQ$_{95/5}$, 63; ORP, 22.0%) > E2 (HQ$_{95/5}$, 16; ORP, 8.1%) > E3 (HQ$_{95/5}$, 1.2; ORP, 3.8%) > NP (HQ$_{95/5}$, 0.46; ORP, 0.6%) > BPA (HQ$_{95/5}$, 0.084; ORP, 0.4%) > OP (HQ$_{95/5}$, 0.057; ORP, 0.2%). All calculated HQ$_{95/5}$ and ORP values for estrogens were above their respective reference value of 1 in the HQ$_{95/5}$ method and 2.5% in the ORP method, implicating the contamination in surface water by estrogens is a global issue of concern. Due to the lack of human effect data, the ORP method was not used in human risk characterisation. Instead, the risk was quantified using acceptable daily intake (ADI) values developed by international and Australian agencies, which gave the ranked HQ$_{95/ADI}$ values in the order of E1 (3.16) > E2 (1.09) > BPA (0.200) > EE2 (0.0398) ≈ E3 (0.0398) > NP (0.0200) > OP (0.00252) for international ADI values and E1 (36.8) > EE2 (0.926) > E2 (0.632) > E3 (0.284) > BPA (0.200) > OP (0.00839) > NP (0.00667)
for Australian ADI values. Apparently, with both sets of ADI values, the HQ_{95/ADI} values obtained for E1 were above the reference value of 1, showing significant level of risk to human health. Compared with the single-point HQ_{95/5} method, the ORP method demonstrated the capability to reflect the information in the shape of cumulative distribution curves. Therefore, it is regarded as an improvement in risk characterisation.
Statement of originality

“This work has not been previously submitted for a degree or diploma in any university. To the best of my knowledge and belief, this thesis contains no material previously published or written by another person except where due reference is made in the thesis itself”.

Signature

August 2010
Acknowledgments

I would like to express most sincere gratitude to my principal supervisors Dr. Jimmy Yu and Professor Des Connell. Their kind guidance and suggestions to my research project were invaluable. They have given me enormous amount of encouragement and assistance. They have taught me how to prioritize on tasks, how to organize ideas, how to manage time and cost. Most importantly, they taught me how to think critically. Their teachings will continue to benefit my future work.

Thanks were also given to Dr Jim Ness, Dr Kees Hulsman, Dr Benjamin Tan, Mr Vernon Garib, Dr Marc Campitelli, Mr Scott Byrnes, and Ms Jane Gifkins. Without their kind help the completion of this thesis would be impossible.

Appreciation goes to my family for their endless love and support.
Table of contents

Abstract ... ii

Statement of originality ... vi

Acknowledgments ... vii

Table of contents ... viii

List of tables .. xiii

List of figures ... xv

List of abbreviations .. xxii

Publications arising from this work .. 1

Chapter 1 Introduction .. 2

Chapter 2 Aims and objectives ... 5

Chapter 3 Literature Review on behaviour and health risk of EDCs .. 7
 3.1 Definition and categorization of EDCs ... 7
 3.1.1 Definition of EDCs ... 7
 3.1.2 Categorization of EDCs .. 8
 3.2 Chemical structures and physicochemical properties of EDCs ... 11
 3.2.1 Chemical structures .. 11
 3.2.2 Physicochemical properties of EDCs .. 13
 3.2.3 Quantitative structure-activity/property relationships for EDCs ... 16
 3.3 Sources of EDCs to the aquatic environment ... 17
 3.4 EDCs fate in wastewater treatment processes .. 20
3.4.1 Excretion, conjugation and deconjugation before entering WWTP 20
3.4.2 Removal mechanisms of EDCs ... 25
3.4.3 EDCs removal in preliminary and primary treatment processes 33
3.4.4 EDCs removal in secondary treatment processes 34
3.4.5 Concentration of EDCs in WWTP influent and effluent 43
3.5 Fugacity-based fate modelling of environmental chemicals 56
3.6 Adverse health effects of EDCs ... 59
 3.6.1 Endocrine system and endocrine disruption .. 60
 3.6.2 Adverse health effects observed in fish, rats and mice 61
 3.6.3 Adverse health effects observed in humans ... 62
 3.6.4 Potency of EDCs .. 63
3.7 Health risk assessment of environmental pollutants 64
 3.7.1 Framework of health risk assessment .. 64
 3.7.2 Risk assessment using probabilistic techniques 65

Chapter 4 Methodology .. 68

 4.1 Quantitative structure-property relationships for steroidal EDCs 68
 4.1.1 Subgroup classification .. 68
 4.1.2 Measured and calculated properties .. 68
 4.1.3 Statistical analysis .. 69
 4.2 Relationship between degradation rate constant and equivalent biomass
 concentration for estrogens .. 70
 4.2.1 Selection of compounds ... 70
 4.2.2 Data source and analysis ... 70
 4.2.3 Relationship development .. 72
4.3 Fate modelling of estrogens in a reservoir receiving recycled wastewater 74
 4.3.1 Selection of compounds ... 74
 4.3.2 Description of the recycling scheme and the reservoir 74
 4.3.3 The fugacity approach based model .. 76
 4.3.4 Parameters used in the model .. 77
 4.3.5 Simulated concentration under typical and random conditions 81
 4.3.6 Effects of reservoir and recycling parameters on simulated concentration.. 82
 4.3.7 Risk characterisation for human health using simulated concentrations 82
4.4 Health risk assessment of EDCs from water and food 83
 4.4.1 Exposure assessment .. 83
 4.4.2 Effects assessment .. 87
 4.4.3 Risk characterisation .. 90

Chapter 5 Quantitative structure-property relationships for steroidal EDCs ... 107
 5.1 Background .. 107
 5.2 Comparison of measured and calculated properties 108
 5.3 Relationship between measured properties .. 112
 5.4 Relationship between measured log S and molecular descriptors 114
 5.5 Relationship between measured log Kow and molecular descriptors 115
 5.6 Chapter conclusions ... 117

Chapter 6 Relationship between degradation rate constant and equivalent
biomass concentration for estrogens ... 119
 6.1 Background .. 119
 6.2 Collation of rate constants and equivalent biomass concentration 120
6.3 Relationship between rate constants and equivalent biomass concentration 123

6.4 Limitations in the available data... 125

6.5 Degradation patterns... 126

6.6 Observations on degradation and structures.. 127

6.7 Chapter conclusions.. 128

Chapter 7 Fate modelling of estrogens in a reservoir receiving recycled wastewater
.. 129

7.1 Background.. 129

7.2 Simulated concentrations under typical conditions.. 130

7.3 Simulated concentrations under random conditions... 132

7.4 Effects of reservoir and recycling parameters on simulated concentration.. 133

7.5 Risk characterisation for human health using simulated concentrations.. 135

7.6 Chapter conclusions.. 136

Chapter 8 Health risk assessment of EDCs from water and food using probabilistic techniques
.. 137

8.1 Background.. 137

8.2 Risk assessment of EDCs for fish with measured data ... 138

8.2.1 Exposure assessment of EDCs in surface water for fish... 138

8.2.2 Effects assessment of EDCs for fish ... 143

8.2.3 Risk characterization of EDCs in surface water for fish... 148

8.3 Risk assessment of EDCs for human health with measured data... 154

8.3.1 Exposure assessment of EDCs in drinking water and food.. 154

8.3.2 Dose-response assessment of EDCs for human health ... 165
8.3.3 Risk characterization of EDCs for human health.. 168

8.4 Chapter conclusions.. 177

Chapter 9 Overall conclusions .. 178

Reference .. 181
List of tables

Table 1. Physicochemical properties of EDCs (estrogens and phenolic compounds) ... 15
Table 2. Daily excretion of estrogens from human body .. 21
Table 3. Effects of pH on degradation rate constant (h⁻¹) .. 36
Table 4. Effects of temperature on degradation rate constant ... 37
Table 5. Measured concentration (ng/L) of estrogens in WWTP influent and effluent. 46
Table 6. Measured concentration (ng/L) of phenolic compounds in WWTP influent and effluent.. 52
Table 7. Summary of influent and effluent concentration and removal efficiency in WWTP ... 55
Table 8. Typical and range values of reservoir characteristics, recycling parameters and estrogen concentrations .. 78
Table 9. Typical half-life values for E1, E2 and EE2 at 20 °C ... 79
Table 10. Data sources for measured concentration values in surface water 84
Table 11. Data sources for measured concentration values in drinking water 85
Table 12. Data sources for measured concentration values in human food 85
Table 13. Sample data sets used for the calculation of cumulative probability 86
Table 14. Data sources of NOAEC and LOAEC values for fish .. 88
Table 15. Typical values used in the interspecies extrapolation of NOAEL_{HED} values. 90
Table 16. Measured property values for steroidal compounds.. 109
Table 17. Calculated molecular descriptors and properties using QikProp program... 110
Table 18. Equivalent biomass concentrations (EBC) and rate constants (k) of E1...... 121
Table 19. Equivalent biomass concentrations (EBC) and rate constants (k) of E2...... 122
Table 20. Equivalent biomass concentrations (EBC) and rate constants (k) of EE2 ... 123
Table 21. Simulated concentrations in different compartments at 20 °C

Table 22. HQ values calculated for fish and humans by simulated concentration

Table 23. Summary of measured EDCs concentration (ng/L) in surface water

Table 24. Minimum NOAEC and LOAEC values (ng/L) for fish

Table 25. Median NOAEC and LOAEC values (ng/L) for fish

Table 26. HQ_{95/5} values calculated for fish

Table 27. Overall risk probability (ORP) values calculated for fish

Table 28. Human daily dose of EDCs from food and drinking water

Table 29. Summary of median and range of NOAEL_{HED} values (µg/kg, bw/d)

Table 30. International and Australian ADI values for EDCs

Table 31. Hazard quotient calculated with international and Australia ADI values
List of figures

Figure 1. Inter-conversion and synthesis pathways of steroidal EDCs 11
Figure 2. Chemical structures and nomenclature of estrogens and androgens 11
Figure 3. Chemical structures of NP, OP and BPA ... 12
Figure 4. Synthesis process of NP ... 12
Figure 6. Chemical structures of commonly occurred estrogen conjugates 22
Figure 7. Conjugated and unconjugated natural estrogens in human urine and faeces .. 24
Figure 8. Conjugated and unconjugated EE2 in human urine and faeces 25
Figure 9. Degradation pathways of EE2 by activated sludge bacteria JCR5 39
Figure 10. Degradation pathways of E2 and E1 by sewage bacteria 40
Figure 11. Metabolic transformation of E2 and E1 in women 41
Figure 12. Proposed fragmentation pathways of E1 ... 42
Figure 13. Framework of risk assessment ... 65
Figure 14. Cumulative probability distribution of exposure and effect concentration... 66
Figure 15. Exposure exceedence curve at different percent of affected samples......... 67
Figure 16. Cumulative probability distribution of hazard quotient values 67
Figure 17. Cumulative probability distribution of exposure and effect for fish.......... 90
Figure 18. Cumulative probability distribution of exposure and effect for humans 91
Figure 19. Exposure exceedence calculated from percent of affected samples 94
Figure 20. Exposure exceedence plotted against percent of affected samples 94
Figure 21. Overall risk probability represented by area under the exceedence curve 95
Figure 22a. Exposure CPD curve on the left of effect CPD curve, resulting in concave exceedence curve below the diagonal line .. 97
Figure 22b. Exposure CPD curve on the right of effect CPD curve, resulting in convex exceedence curve above the diagonal line... 98

Figure 22c. Exposure and effect CPD curves overlapped, resulting in exceedence curves separating the rectangular into half ... 99

Figure 23a. Comparison of HQ\textsubscript{95/5} and ORP values when the relative distance between exposure and effect CPD curves changed. ... 100

Figure 23b. Comparison of HQ\textsubscript{95/5} and ORP values when the slope of the exposure CPD curves changed. .. 101

Figure 23c. Comparison of HQ\textsubscript{95/5} and ORP values when the slope of the effect CPD curves changed. .. 101

Figure 24a. Comparison of HQ\textsubscript{95/5} and ORP values when the exposure curves overlapped at the same C\textsubscript{95} point... 102

Figure 24b. Comparison of HQ\textsubscript{95/5} and ORP values when the effect curves overlapped at the same C\textsubscript{5} point ... 103

Figure 25. Comparison of HQ\textsubscript{95/5} and ORP values when the exposure CPD curves overlapped at the same EC\textsubscript{95} point. ... 104

Figure 26a. A ‘Z’ shaped exposure exceedence curve resulting from a vertical exposure distribution.. 105

Figure 26b. A mirror ‘Z’ shaped exposure exceedence curve resulting from a vertical effect distribution.. 106

Figure 27. Plots of measured and calculated log K\textsubscript{ow} and log S values 111

Figure 28. Plots of measured log S values against measured log K\textsubscript{ow} values 113

Figure 29. Correlations of measured log S values with molecular descriptors 115

Figure 30. Correlations of measured log K\textsubscript{ow} values with molecular descriptors 116
Figure 31. Correlations between log K and log EBC for E1 .. 124
Figure 32. Correlations between log K and log EBC for E2 .. 124
Figure 33. Correlations between log K and log EBC for EE2 .. 125
Figure 34. Simulated concentrations in the water compartment after advanced treatment under random conditions ... 132
Figure 35. Effects of reservoir characteristics and recycling parameters on estrogen concentrations in reservoir water ... 134
Figure 36. Cumulative probability distribution of measured E1 concentration in surface water from European countries, USA, Canada, Japan and China 139
Figure 37. Cumulative probability distribution of measured E2 concentration in surface water from European countries, USA, Canada, Japan and China 139
Figure 38. Cumulative probability distribution of measured E3 concentration in surface water from European countries, USA, Canada, Japan and China 139
Figure 39. Cumulative probability distribution of measured EE2 concentration in surface water from European countries, USA, Canada, Japan and China 140
Figure 40. Cumulative probability distribution of measured NP concentration in surface water from European countries, USA, Canada, Japan and China 140
Figure 41. Cumulative probability distribution of measured OP concentration in surface water from European countries, USA, Canada, Japan and China 140
Figure 42. Cumulative probability distribution of measured BPA concentration in surface water from European countries, USA, Canada, Japan and China 141
Figure 43. Cumulative probability distribution of NOAEC and LOAEC values of E1 for fish in surface water .. 143
Figure 44. Cumulative probability distribution of NOAEC and LOAEC values of E2 for fish in surface water

Figure 45. Cumulative probability distribution of NOAEC and LOAEC values of EE2 for fish in surface water

Figure 46. Cumulative probability distribution of NOAEC and LOAEC values of NP for fish in surface water

Figure 47. Cumulative probability distribution of NOAEC and LOAEC values of OP for fish in surface water

Figure 48. Cumulative probability distribution of NOAEC and LOAEC values of BPA for fish in surface water

Figure 49. Comparison between the cumulative probability distributions of exposure and effect concentration of E1 for fish in surface water

Figure 50. Comparison between the cumulative probability distributions of exposure and effect concentration of E2 for fish in surface water

Figure 51. Comparison between the cumulative probability distributions of exposure and effect concentration of E3 for fish in surface water

Figure 52. Comparison between the cumulative probability distributions of exposure and effect concentration of EE2 for fish in surface water

Figure 53. Comparison between the cumulative probability distributions of exposure and effect concentration of NP for fish in surface water

Figure 54. Comparison between the cumulative probability distributions of exposure and effect concentration of OP for fish in surface water

Figure 55. Comparison between the cumulative probability distributions of exposure and effect concentration of BPA for fish in surface water
Figure 56. Exposure exceedence curves of estrogens for fish......................... 153
Figure 57. Exposure exceedence curves of phenolic compounds for fish............ 153
Figure 58. Cumulative probability distribution of E1 concentration in drinking water
 and human food ... 155
Figure 59. Cumulative probability distribution of E2 concentration in drinking water
 and human food .. 155
Figure 60. Cumulative probability distribution of E3 concentration in dairy products 156
Figure 61. Cumulative probability distribution of EE2 concentration in drinking water
 .. 156
Figure 62a. Cumulative probability distribution of NP concentration in drinking water
 and human food ... 157
Figure 62b. Cumulative probability distribution of NP concentration in drinking water
 and human food .. 157
Figure 62c. Cumulative probability distribution of NP concentration in drinking water
 and human food .. 158
Figure 63a. Cumulative probability distribution of OP concentration in drinking water
 and human food ... 158
Figure 63b. Cumulative probability distribution of OP concentration in drinking water
 and human food .. 159
Figure 63c. Cumulative probability distribution of OP concentration in drinking water
 and human food .. 159
Figure 64. Cumulative probability distribution of BPA concentration in drinking water
 and human food .. 160
Figure 65. Cumulative probability distribution of NOAEL_{HED} values for E2 165
Figure 66. Cumulative probability distribution of NOAEL\textsubscript{HED} values for EE2 166
Figure 67. Cumulative probability distribution of NOAEL\textsubscript{HED} values for NP 166
Figure 68. Cumulative probability distribution of NOAEL\textsubscript{HED} values for OP 166
Figure 69. Cumulative probability distribution of NOAEL\textsubscript{HED} values for BPA 167
Figure 70. Comparison of human daily dose from drinking water and various foods with ADI values for E1 ... 169
Figure 71. Comparison of human daily dose from drinking water and various foods with ADI and NOAEL\textsubscript{HED} values for E2... 169
Figure 72. Comparison of human daily dose from dairy products with ADI values for E3 ... 170
Figure 73. Comparison of human daily dose from drinking water with ADI and NOAEL\textsubscript{HED} values for EE2 ... 170
Figure 74a. Comparison of human daily dose from drinking water and various foods with ADI and NOAEL\textsubscript{HED} values for NP ... 171
Figure 74b. Comparison of human daily dose from drinking water and various foods with ADI and NOAEL\textsubscript{HED} values for NP ... 171
Figure 74c. Comparison of human daily dose from drinking water and various foods with ADI and NOAEL\textsubscript{HED} values for NP ... 172
Figure 75a. Comparison of human daily dose from drinking water and various foods with ADI and NOAEL\textsubscript{HED} values for OP ... 172
Figure 75b. Comparison of human daily dose from drinking water and various foods with ADI and NOAEL\textsubscript{HED} values for OP ... 173
Figure 75c. Comparison of human daily dose from drinking water and various foods with ADI and NOAEL\textsubscript{HED} values for OP ... 173
Figure 76. Comparison of human daily dose from drinking water and various foods with ADI and NOAEL_{HED} values for BPA... 174

Figure 77. Comparison of human daily dose from drinking water with female daily intake of EE2 as oral contraceptive ... 176
List of abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADI</td>
<td>Acceptable Daily Intake</td>
</tr>
<tr>
<td>APEO</td>
<td>Alkylphenol Ethoxylates</td>
</tr>
<tr>
<td>AWTP</td>
<td>Advanced Wastewater Treatment Plant</td>
</tr>
<tr>
<td>BCF</td>
<td>Bioconcentration Factor</td>
</tr>
<tr>
<td>BOD</td>
<td>Biological Oxygen Demand</td>
</tr>
<tr>
<td>BPA</td>
<td>Bisphenol A</td>
</tr>
<tr>
<td>cfu</td>
<td>Colony-forming Unit</td>
</tr>
<tr>
<td>CP</td>
<td>Cumulative Probability</td>
</tr>
<tr>
<td>CPD</td>
<td>Cumulative Probability Distribution</td>
</tr>
<tr>
<td>DDT</td>
<td>Dichlorodiphenyltrichloroethane</td>
</tr>
<tr>
<td>DES</td>
<td>Diethylstilbestrol</td>
</tr>
<tr>
<td>E1</td>
<td>Estrone</td>
</tr>
<tr>
<td>E2</td>
<td>17β-estradiol</td>
</tr>
<tr>
<td>E3</td>
<td>Estriol</td>
</tr>
<tr>
<td>EE2</td>
<td>17α-ethinylestradiol</td>
</tr>
<tr>
<td>EBC</td>
<td>Equivalent Biomass Concentration</td>
</tr>
<tr>
<td>BC</td>
<td>Biomass Concentration</td>
</tr>
<tr>
<td>EDCs</td>
<td>Endocrine Disrupting Chemicals</td>
</tr>
<tr>
<td>EE2</td>
<td>17α-ethinylestradiol</td>
</tr>
<tr>
<td>EEF</td>
<td>Estradiol Equivalent Factor</td>
</tr>
<tr>
<td>EEQ</td>
<td>Estradiol Equivalent Quantity</td>
</tr>
<tr>
<td>FISA</td>
<td>Hydrophilic Component of the Total Solvent Accessible Surface Area</td>
</tr>
<tr>
<td>FOSA</td>
<td>Hydrophobic Component of the Total Solvent Accessible Surface Area</td>
</tr>
<tr>
<td>H</td>
<td>Henry’s Law Constant</td>
</tr>
<tr>
<td>HC</td>
<td>Hazard Concentration</td>
</tr>
<tr>
<td>HDD</td>
<td>Human Daily Dose</td>
</tr>
<tr>
<td>HED</td>
<td>Human Equivalent Dose</td>
</tr>
<tr>
<td>HQ</td>
<td>Hazard Quotient</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Term</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>HRT</td>
<td>Hydraulic Retention Time</td>
</tr>
<tr>
<td>k</td>
<td>Degradation Rate Constant</td>
</tr>
<tr>
<td>K_{oc}</td>
<td>Octanol-Carbon Partition Coefficient</td>
</tr>
<tr>
<td>K_{ow}</td>
<td>Octanol-Water Partition Coefficient</td>
</tr>
<tr>
<td>LOAEC</td>
<td>Lowest-Observed-Adverse-Effects-Concentration</td>
</tr>
<tr>
<td>MF</td>
<td>Microfiltration</td>
</tr>
<tr>
<td>MLSS</td>
<td>Mixed Liquor Suspended Solids</td>
</tr>
<tr>
<td>MLVSS</td>
<td>Mixed Liquor Volatile Suspended Solids</td>
</tr>
<tr>
<td>MOS</td>
<td>Margin of Safety</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>NAS</td>
<td>Nitrifying Activated Sludge</td>
</tr>
<tr>
<td>NF</td>
<td>Nanofiltration</td>
</tr>
<tr>
<td>NOAEC</td>
<td>No-Observed-Adverse-Effects-Concentration</td>
</tr>
<tr>
<td>NOAEL</td>
<td>No-Observed-Adverse-Effects-Level</td>
</tr>
<tr>
<td>NP</td>
<td>Nonylphenol</td>
</tr>
<tr>
<td>OP</td>
<td>Octylphenol</td>
</tr>
<tr>
<td>ORP</td>
<td>Overall Risk Probability</td>
</tr>
<tr>
<td>P</td>
<td>Partition Coefficient</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic Aromatic Hydrocarbons</td>
</tr>
<tr>
<td>PCB</td>
<td>Polychlorinated Bisphenols</td>
</tr>
<tr>
<td>PHS</td>
<td>Public Health Standards</td>
</tr>
<tr>
<td>PSA</td>
<td>Van de Waals Surface Area of Polar Nitrogen and Oxygen Atoms</td>
</tr>
<tr>
<td>QSAR</td>
<td>Quantitative Structure-Activity Relationship</td>
</tr>
<tr>
<td>QSPR</td>
<td>Quantitative Structure-Property Relationship</td>
</tr>
<tr>
<td>RBA</td>
<td>Receptor Binding Affinity</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse Osmosis</td>
</tr>
<tr>
<td>RPE</td>
<td>Relative Proliferative Effects</td>
</tr>
<tr>
<td>RPP</td>
<td>Relative Proliferative Potency</td>
</tr>
<tr>
<td>S</td>
<td>Aqueous Solubility</td>
</tr>
<tr>
<td>SMILES</td>
<td>Simplified Molecular Input Line Entry Specification</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>SRT</td>
<td>Solids Retention Time</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>TBT</td>
<td>Tributyl Tin</td>
</tr>
<tr>
<td>T_m</td>
<td>Melting Point</td>
</tr>
<tr>
<td>UF</td>
<td>Ultrafiltration</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>VC</td>
<td>Viable Counts</td>
</tr>
<tr>
<td>VP</td>
<td>Vapour Pressure</td>
</tr>
<tr>
<td>VTG</td>
<td>Vitellogenin</td>
</tr>
<tr>
<td>WCRWP</td>
<td>Western Corridor Recycled Water Project</td>
</tr>
<tr>
<td>WWTP</td>
<td>Wastewater Treatment Plant</td>
</tr>
</tbody>
</table>
Publications arising from this work

