Regulation of the Chemokine Receptors CXCR4, CXCR7, and the Androgen Receptor in Prostate Cancer

Debra Lois Kiss
Bachelor of Biomedical Science (Honours)

Eskitis Institute for Cell and Molecular Therapies
Science, Environment, Engineering and Technology
Griffith University

A thesis submitted in fulfilment of the requirements of the degree of
Doctor of Philosophy

January 2013
The chemokine receptor CXCR4 contributes to tumour cell migration and invasion during the progression of prostate cancer. In particular, this pathway is central to the metastasis of prostate cancer to the bone marrow. Limited therapeutic options exist for prostate cancer patients who have progressed to advanced metastatic disease, and pharmacological interference of the chemokine network may serve to control tumour cell dissemination and the establishment of metastasis. A more detailed knowledge of the mechanisms regulating chemokine receptors is required, in order to further characterise and explore the capacity and effectiveness of targeting these pathways for therapeutic intervention in prostate cancer.

Here, the regulation of CXCR4 protein expression and function was investigated in relation to androgens and the extracellular matrix. Accumulating evidence of CXCR4 regulation by androgens and the androgen receptor have indicated that androgens not only promote the growth and development of prostate cancer, but may actively contribute to the metastatic progression of prostate through modulation of the chemokine network. In the current study, the endogenous protein expression and functionality of the androgen receptor were firstly characterised in the androgen-insensitive prostate cancer cell lines DU145 and PC3, using the androgen-sensitive LNCaP cells as a basis for comparison. Investigations were performed using two-dimensional culture in conjunction with the more physiologically relevant three-dimensional in vitro culture model. As expected, LNCaP cells expressed prostate-specific antigen and displayed androgen-sensitive growth regulation, indicative of a functional androgen receptor. The androgen-insensitive DU145 cell line remained androgen receptor-negative in both two-dimensional and three-dimensional culture conditions. Surprisingly, androgen receptor-negative PC3 cells displayed a clear induction of androgen receptor protein expression in three-dimensional culture. The growth of PC3 cells remained androgen-insensitive in three-dimensional culture, and although androgen receptor responded to treatment with androgens by undergoing nuclear translocation, no production of the androgen receptor-target gene, prostate-specific antigen, was detected. Furthermore, evidence of differential androgen receptor regulation by signalling pathway activity was observed between PC3 and LNCaP cells, revealing a divergence in androgen receptor regulation between androgen-sensitive LNCaP cells and androgen-insensitive PC3 cells.
Consistent with findings in the literature, androgen regulation of CXCR4 expression was demonstrated in LNCaP cells, although the functional consequences of this regulation were limited. Functional studies of ligand-induced signalling and LNCaP cell migration revealed that CXCR4 displayed limited functional responses in this cell line. The more invasive, androgen-insensitive DU145 and PC3 cell lines were found to express highly functional CXCR4, which mediated ligand-induced cell migration responses. The treatment of androgen receptor-positive three-dimensional PC3 cultures with androgens resulted in increased CXCR4 protein expression, similar to that observed in LNCaP; a response which was mediated by androgen receptor activity. However, the lack of prostate-specific antigen production in these PC3 cultures indicated limited androgen receptor transcriptional activity, despite nuclear translocation of the receptor in response to DHT. Further investigations indicated that androgen receptor signalling may contribute to CXCR4 regulation in PC3 cells, an effect mediated through differential pathways to that observed in LNCaP cells.

The alternative SDF-1α-binding receptor, CXCR7, has also been associated with prostate cancer progression via regulation of tumour growth and invasion. Studies of prostate cancer cell proliferation in two-dimensional culture revealed that CXCR7 was required to maintain the growth of LNCaP cells in depleted culturing conditions generated using charcoal-stripped FBS. Considering previous reports of a mutual regulation occurring between CXCR7 and CXCR4 in vitro, the regulation of these receptors were studied in three-dimensional culture. A marked up-regulation of both CXCR7 and CXCR4 protein was observed upon culturing PC3 cells in three dimensions. The expression of these proteins was found to co-localise at stellate projections, structures which penetrated into the surrounding matrix and were rich in matrix metalloproteinase protein expression. A crucial role for integrin β1 was demonstrated in the formation and maintenance of the PC3 stellate phenotype, as a mediator of cell-extracellular matrix interactions. Consistent with the close association between CXCR4 and CXCR7 protein expression with stellate projections, inhibition of integrin β1 resulted in reduced protein expression for both chemokine receptors. The results reported here indicated that the protein expression of CXCR7 and CXCR4 were linked with the more invasive, stellate phenotype of PC3 cells in three-dimensional culture in vitro. When considered in the context of chemokine receptors in the regulation of prostate cancer metastasis, these findings may have implications for inter-regulation between chemokine receptors, integrin β1, and the extracellular matrix.
potentially contributing to the progression of prostate cancer to the invasive, metastatic tumour cell phenotype characteristic of advanced disease.
STATEMENT OF ORIGINALITY

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the dissertation itself.

Debra L. Kiss
Table of Contents

Abstract ... I

Statement of Originality ... IV

Table of Contents ... V

List of Figures .. XI

List of Tables .. XIV

List of Abbreviations .. XV

Contributions of Others to the Thesis ... XXI

Acknowledgements .. XXII

1 **Chapter One: General Introduction** ... 1

1.1 **The Prostate** .. 2

1.1.1 Anatomy of the Prostate .. 2

1.1.2 Development and Maintenance of the Prostate ... 2

1.1.3 Age-Related Conditions of the Prostate .. 4

1.2 **Prostate Cancer (PCA)** .. 5

1.2.1 Stages of PCA Progression ... 5

1.2.2 Molecular Mechanisms of PCA: Development and Progression 6

1.2.3 Progression to Metastasis .. 8

1.2.4 Integrins and Cancer Metastasis .. 10

1.3 **Clinical Aspects of PCA: Diagnosis and Treatment** 13

1.3.1 Diagnosis .. 13

1.3.2 Current PCA Treatment Options ... 15

1.3.3 Over-Diagnosis and Over-Treatment of PCA .. 17

1.3.4 Novel Biomarkers for PCA ... 18

1.4 **Models of PCA: In Vivo and In Vitro Approaches** 21

1.4.1 Traditional 2D Cell Culture .. 22

1.4.2 3D Cell Culture in Cancer Research .. 23

1.4.3 3D Culture as a Tool for Studying Cancer Biology 26

1.5 **Therapeutic Targets in PCA** ... 28

1.5.1 Androgens and the AR .. 28

1.5.2 Chemokines and Chemokine Receptors ... 30

1.5.2.1 The Functions of Chemokine Receptors .. 30

1.5.2.2 Chemokines and Cancer .. 32

1.5.3 CXCR4 ... 35
2 CHAPTER TWO: MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>2.1 General Tissue Culture</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.1 Consumables</td>
<td>57</td>
</tr>
<tr>
<td>2.1.2 2D Cell Culture</td>
<td>57</td>
</tr>
<tr>
<td>2.1.3 3D Cell Culture</td>
<td>58</td>
</tr>
<tr>
<td>2.1.3.1 Extraction of Cells from 3D Culture</td>
<td>59</td>
</tr>
<tr>
<td>2.1.4 Charcoal-Stripped FBS (CS-FBS)</td>
<td>60</td>
</tr>
<tr>
<td>2.1.5 Measurement of Prostate Specific Antigen (PSA)</td>
<td>60</td>
</tr>
<tr>
<td>2.2 Immunocytochemistry and Imaging</td>
<td>61</td>
</tr>
<tr>
<td>2.2.1 Immunocytochemistry</td>
<td>61</td>
</tr>
<tr>
<td>2.2.2 Cell Imaging</td>
<td>62</td>
</tr>
<tr>
<td>2.2.3 Quantification Procedures and Statistical Analysis</td>
<td>63</td>
</tr>
<tr>
<td>2.2.3.1 Image Analysis</td>
<td>63</td>
</tr>
<tr>
<td>2.2.3.2 Image Analysis in 2D</td>
<td>64</td>
</tr>
<tr>
<td>2.2.3.3 Image Analysis in 3D</td>
<td>64</td>
</tr>
<tr>
<td>2.2.3.4 Quantification of Spheroid Size</td>
<td>65</td>
</tr>
<tr>
<td>2.2.3.5 Quantification of Stellate Projections</td>
<td>65</td>
</tr>
<tr>
<td>2.2.3.6 Statistical Analysis</td>
<td>65</td>
</tr>
<tr>
<td>2.3 Cell Proliferation Assays</td>
<td>66</td>
</tr>
<tr>
<td>2.3.1 MTT Assay</td>
<td>66</td>
</tr>
<tr>
<td>2.3.2 Alamar BlueTM Assay in 2D Culture</td>
<td>66</td>
</tr>
<tr>
<td>2.3.3 Alamar BlueTM Assay in 3D Culture</td>
<td>67</td>
</tr>
<tr>
<td>2.4 Ligand-Induced Receptor Signalling Assays</td>
<td>67</td>
</tr>
<tr>
<td>2.5 TranswellR Cell Migration Assays</td>
<td>67</td>
</tr>
<tr>
<td>2.6 SDS-PAGE and Western Blot</td>
<td>68</td>
</tr>
<tr>
<td>2.6.1 Cell Lysates</td>
<td>68</td>
</tr>
<tr>
<td>2.6.2 Detergent Compatible (DC) Protein Assay</td>
<td>69</td>
</tr>
<tr>
<td>2.6.3 SDS-PAGE and Western Blot</td>
<td>69</td>
</tr>
<tr>
<td>2.7 Cloning and Plasmid Propagation</td>
<td>72</td>
</tr>
<tr>
<td>2.7.1 Extraction of PSG5-AR</td>
<td>72</td>
</tr>
<tr>
<td>2.7.2 Plasmid Preparation</td>
<td>72</td>
</tr>
<tr>
<td>2.7.3 Bacterial Transformation</td>
<td>73</td>
</tr>
<tr>
<td>2.7.4 Polymerase Chain Reaction (PCR)</td>
<td>74</td>
</tr>
<tr>
<td>2.7.4.1 PCR for DNA Sequencing Analysis</td>
<td>74</td>
</tr>
</tbody>
</table>
2.7.4.1.1 Sequencing PCR for AR ... 74
2.7.4.2 The Use of PCR to Clone AR for Ligation into Gateway® Vector 76
2.7.4.2.1 Components of PCR Reaction for Gateway® Cloning 76
2.7.5 RESTRICTION ENZYME DIGESTIONS ... 78
2.7.6 EXTRACTION OF DNA FROM AGAROSE GELS 78
2.7.7 DNA LIGATION .. 79
2.7.7.1 Reaction Protocol and Components .. 79
2.7.7.2 Oligonucleotide Linkers: Addition of Restriction Enzyme Sites into Gateway® Vector .. 80
2.7.7.2.1 Oligonucleotide Linker Design .. 80
2.7.7.2.2 Generating the Double-Stranded (DS)-Linker 81
2.7.7.2.3 Ligating the DS-Linker into pENTR™/D-TOPO® Vector 81
2.7.7.2.4 Cloning AR into the pENTR™/D-TOPO®-Linker Vector 82
2.7.7.2.5 Clonase™ Reaction: Producing pTREX™-DEST30-AR 82
2.8 TRANSFECTIONS OF PCA CELLS WITH AR EXPRESSION VECTOR 83
2.8.1 PSG5-AR TRANSIENT CELL TRANSFECTIONS 83
2.8.2 CELL TRANSFECTIONS WITH INDUCIBLE EXPRESSION VECTOR 83
2.8.2.1 Optimisation of Vector Co-Transfection Ratios 84
2.8.2.2 Transfections of Cells with Inducible pTREX™-DEST30-AR 85
2.8.2.3 Selection Antibiotic Sensitivity of Cells for Stable Selection 85
2.9 REVERSE TRANSCRIPTASE-PCR (RT-PCR) 87
2.9.1 RT-PCR PRIMERS .. 87
2.9.2 RNA EXTRACTION ... 87
2.9.3 DNASE DIGESTION ... 88
2.9.4 cDNA SYNTHESIS .. 88
2.9.5 RT-PCR REACTION ... 88

3 CHAPTER THREE: THE EFFECT OF 3D CELL CULTURE ON AR REGULATION IN PCA 89

3.1 INTRODUCTION ... 90
3.2 RESULTS .. 92
3.2.1 AR REGULATION IN LNCAP AND PC3 CELLS 92
3.2.1.1 LNCaP Cells in 2D Culture ... 92
3.2.1.2 3D Cultures of LNCaP Cells .. 94
3.2.1.2.1 Regulation of AR by Signalling Pathways in LNCaP 98
3.2.1.3 2D Cultures of PC3 Cells ... 100
3.2.1.4 3D Cultures of PC3 Cells ... 101
3.2.1.5 Regulation of AR Protein Expression in PC3 cells 105
3.2.1.5.1 Regulation of AR Protein in 3D Spheroids 105
3.2.1.5.2 Regulation of AR by Intracellular Signalling Pathways in PC3 106
3.2.2 ANALYSIS OF AR PROTEIN EXPRESSION IN DU145 CELLS 109
3.3 DISCUSSION .. 111
3.3.1 PCA CELLS IN 2D AND 3D CULTURE .. 111
3.3.2 ENDOGENOUS UP-REGULATION OF AR PROTEIN IN 3D CELL CULTURES 111
3.3.3 AR PROTEIN EXPRESSION IN PC3 - ONLY IN 3D CULTURE 112
3.3.4 ALTERED AR FUNCTIONALITY IN PC3 CELLS 113
4 CHAPTER FOUR: REGULATION OF CXCR4 IN PCA ... 116

4.1 INTRODUCTION .. 117
4.2 RESULTS ... 119
4.2.1 CXCR4 REGULATION IN ANDROGEN-SENSITIVE LNCaP CELLS 119
4.2.1.1 The Expression and Function of CXCR4 Protein in 2D Culture 119
4.2.1.1.1 SDF-1α- Induced Signalling .. 121
4.2.1.1.2 Cell Migration Response to SDF-1α ... 122
4.2.1.2 Expression and Function of CXCR4 Protein in 3D Culture 123
4.2.1.3 The Effect of Androgens on CXCR4 Regulation in 2D Culture 125
4.2.1.4 The Effect of Androgens on CXCR4 Regulation in 3D Culture 127
4.2.1.4.1 The Role of AR in CXCR4 Regulation in LNCaP 3D Cultures 129
4.2.1.4.2 Regulation of CXCR4 by Intracellular Signalling Pathways in LNCaP 130
4.2.2 CXCR4 REGULATION IN ANDROGEN-INSENSITIVE PC3 CELLS 132
4.2.2.1 The Expression and Function of CXCR4 Protein in PC3 Cells 132
4.2.2.1.1 SDF-1α-Induced Signalling in PC3 Cells 134
4.2.2.1.2 PC3 Cell Migration Response to SDF-1α 135
4.2.2.2 The Effect of 3D Culture on CXCR4 Protein Expression in PC3 Cells .. 136
4.2.2.3 CXCR4 Regulation by Androgens in PC3 Cells 138
4.2.2.3.1 Signalling Pathways Regulating CXCR4 Protein Expression in PC3 142
4.2.2.3.2 Consequences of CXCR4 Regulation in PC3 Cells 144
4.2.3 CXCR4 REGULATION IN ANDROGEN-INSENSITIVE DU145 CELLS 144
4.2.3.1 The Expression and Function of CXCR4 Protein in DU145 Cells 144
4.2.3.1.1 SDF-1α-Induced Signalling in DU145 .. 146
4.2.3.1.2 The Cell Migration Response of DU145 Cells to SDF-1α 147
4.2.3.2 CXCR4 Protein Expression in 3D Cultures of DU145 Cells 148
4.2.3.3 The Effect of Androgens on CXCR4 Regulation in DU145 Cells 150
4.3 DISCUSSION ... 153
4.3.1 SDF-1A TREATMENT DID NOT RESULT IN CXCR4 DOWN-REGULATION 153
4.3.2 DIFFERENCES IN CXCR4 FUNCTION BETWEEN PCA CELL LINES 153
4.3.3 CXCR4 FUNCTION IN DU145 AND PC3 CELLS 155
4.3.4 ANDROGEN REGULATION OF CXCR4 IN PCA CELLS 156
4.3.5 MEASURING THE FUNCTIONAL CONSEQUENCES OF CXCR4 MODULATION IN 3D CULTURES .. 157

5 CHAPTER FIVE: CONSTRUCTION OF AN INDUCIBLE AR EXPRESSION SYSTEM 159

5.1 INTRODUCTION .. 160
5.2 RESULTS ... 161
5.2.1 GENERATING THE TETRACYCLINE-INDUCIBLE AR EXPRESSION CONSTRUCT .. 161
5.2.1.1 Confirming PSG5-AR Vector Identity and Function 163
5.2.1.2 Constructing the Tetracycline-Inducible AR Expression Vector 163
5.2.1.2.1 Primary Cloning Approach: PCR ... 165
5.2.1.2.2 Alternative Cloning Approach: Restriction Enzymes and Linkers 165
5.2.1.2.3 Addition of Compatible Restriction Sites into pENTR™/D-TOPO®............. 165
5.2.1.2.3.1 Generating the pENTR™-AR Entry Vector .. 168
5.2.1.2.3.1 Generating the pTREX™-DEST30-AR Expression Vector 169
5.2.1.3 Validation of Expression Vector Function .. 172
5.2.2 OPTIMISATION OF CELL TRANSFECTION PROTOCOL.................................. 174
5.2.2.1 Testing the Effect of Tetracycline on Cell Viability 175
5.2.2.2 Optimisation of Vector Ratios for Transient Co-Transfection 177
5.2.2.3 Optimisation of Tetracycline Dose for AR Induction 180
5.2.2.4 Optimisation of Transfection Efficiency in DU145 Cell Line 180
5.2.3 THE EFFECT OF AR EXPRESSION ON CXCR4 .. 182
5.3 DISCUSSION .. 184
5.3.1 STABLE TRANSFECTIONS ... 184
5.3.2 TRANSIENT TRANSFECTIONS .. 185

6 CHAPTER SIX: THE FUNCTION AND REGULATION OF CXCR7 IN PCA CELLS 187

6.1 INTRODUCTION ... 188
6.2 RESULTS .. 190
6.2.1 CXCR7 IN 2D CULTURES OF PCA CELLS ... 190
6.2.1.1 CXCR7 Protein Expression in 2D ... 190
6.2.1.2 Confirmation of Inhibitory Antibody Binding ... 190
6.2.1.3 The Effect of Chemokine Receptor Inhibition on PCa Cell Proliferation 192
6.2.1.4 Regulation of LNCAP Cell Growth by CXCR7 in Depleted Culturing Conditions 196
6.2.2 CXCR7 PROTEIN EXPRESSION IN 3D CULTURE 198
6.2.2.1 Expression of CXCR7 protein in 3D Cultures Compared to 2D 198
6.2.2.2 Chemokine Receptor Expression During PC3 Spheroid Development 199
6.2.2.3 Protein Expression of Integrin β1, MMP-11 and β-Laminin in PC3 Cultures . 202
6.2.2.4 Expression of CXCR7 Protein in PC3 Spheroid Projections 204
6.2.2.5 The Effect of Chemokine Receptor Inhibition on 3D Cultures of PC3 Cells ... 208
6.2.2.5.1 Spheroid Growth ... 208
6.2.2.5.2 Development of Spheroid Projections in Culture 209
6.2.2.6 Loss of PC3 Spheroid Morphology after Functional Inhibition of Integrin β1.. 211
6.2.2.6.1 The Effect of Integrin β1 Inhibition on CXCR7 and CXCR4 212
6.3 DISCUSSION ... 217
6.3.1 CXCR7 REGULATED LNCAP CELL GROWTH RATES UNDER CONDITIONS OF STRESS 217
6.3.2 STELLATE PROJECTIONS WERE RICH IN THE EXPRESSION OF PRO-INVASIVE PROTEINS 220
6.3.3 CXCR7 AND CXCR4 PROTEIN EXPRESSION IN STELLATE PROJECTIONS 220
6.3.4 CXCR7 AND CXCR4 FUNCTION DO NOT MEDIATE PC3 STELLATE MORPHOLOGY 221
6.3.5 DEVELOPMENT OF STELLATE PROJECTIONS WERE MEDIATED BY INTEGRIN β1 221
6.3.6 REGULATION OF CXCR4 AND CXCR7 PROTEIN EXPRESSION VIA INTEGRIN β1 222

7 CHAPTER SEVEN: CONCLUSIONS AND FUTURE DIRECTIONS 223

7.1 AR AND CHEMOKINE REGULATION IN PCA: THE IMPACT OF 3D CULTURE 224
7.2 A ROLE FOR CXCR7 IN REGULATING PCA CELL GROWTH RATE IN DEPLETED CULTURING CONDITIONS ... 226
7.3 REGULATION BETWEEN CXCR4, CXCR7 AND THE ECM IN PCA CELLS ... 227
7.4 PLASTICITY OF PC3 CELL MORPHOLOGY AND PROTEIN EXPRESSION IN THE PRESENCE OF MATRIGEL .. 229
7.5 SIGNIFICANCE OF FINDINGS FOR PCA RESEARCH ... 231

8 APPENDIX A: PRIMERS USED FOR DNA SEQUENCING REACTIONS 233

9 APPENDIX B: PRIMER SEQUENCES FOR RT-PCR 234

10 APPENDIX C: SEQUENCE OF THE AR INSERT IN PSG5-AR 235

11 APPENDIX D: THE AR SEQUENCE CLONED INTO PENTR™-AR, CLONE 2 237

12 REFERENCES 238
Figure 4.6 Up-regulation of CXCR4 protein by androgens in 3D cultures of LNCAP cells. ... 128

Figure 4.7 Up-regulation of CXCR4 protein by androgens in 3D cultures of LNCAP cells was mediated by AR activity ... 129

Figure 4.8 The effect of signalling pathway inhibitors on androgen regulation of CXCR4 in LNCAP cells ... 131

Figure 4.9 CXCR4 in PC3 cells was responsive to SDF-1α stimulation ... 133

Figure 4.10 SDF-1α-induced signalling in PC3 cells ... 134

Figure 4.11 Optimisation of PC3 cell seeding density for cell migration assays ... 135

Figure 4.12 CXCR4-mediated migration towards SDF-1α in PC3 cells ... 136

Figure 4.13 3D cultures of PC3 cells displayed enhanced protein expression of ligand-responsive CXCR4 ... 137

Figure 4.14 The protein expression of CXCR4 in 2D cultures of PC3 cells was unaffected by androgens ... 139

Figure 4.15 Up-regulation of CXCR4 protein in response to androgens in 3D cultures of PC3 cells ... 141

Figure 4.16 The effect of signalling pathway inhibitors on androgen regulation of CXCR4 in 3D cultures of PC3 cells ... 143

Figure 4.17 Two-dimensional cultures of DU145 expressed ligand-responsive CXCR4 ... 145

Figure 4.18 SDF-1α-induced signalling in DU145 cells ... 146

Figure 4.19 Optimisation of DU145 cell seeding density for cell migration assays ... 147

Figure 4.20 CXCR4-mediated migration of DU145 cells to SDF-1α ... 148

Figure 4.21 3D cultures of DU145 cells maintained ligand-responsive CXCR4 protein expression ... 149

Figure 4.22 CXCR4 protein expression in DU145 cells was unaffected by androgen treatment in 2D or 3D culture ... 151

Figure 5.1 The T-REX™ tetracycline-inducible expression system ... 162

Figure 5.2 Transfection of cells with PSG5-AR produced androgen-responsive AR protein ... 163

Figure 5.3 The use of PCR to amplify AR for cloning into pENTR™/D-TOPO® ... 164

Figure 5.4 Addition of Bgl II and BamH I restriction enzyme sites into the pENTR™/D-TOPO® vector using oligonucleotide linkers ... 166

Figure 5.5 Confirmation of linker incorporation into the pENTR™/D-TOPO® ... 167

Figure 5.6 Restriction enzyme analysis of pENTR™-AR ligation clones ... 168

Figure 5.7 Construction of the pTREX™-DEST30-AR expression vector ... 170

Figure 5.8 Restriction enzyme analysis of the pTREX™-DEST30-AR ligation clone 3 ... 171

Figure 5.9 Transient transfection with pTREX™-DEST30-AR produced ligand-responsive AR expression ... 173

Figure 5.10 Antibiotic selection of transfected DU145 cells resulted in unstable AR protein expression ... 175

Figure 5.11 Tetracycline treatment did not produce toxicity in DU145 cells ... 176

Figure 5.12 Optimisation of tetracycline-inducible gene expression in PC3 and DU145 cells ... 178

Figure 5.13 Confirmation of optimal DNA ratios for transient co-transfection in PC3 and DU145 cells ... 179

Figure 5.14 Optimisation of tetracycline dose for AR induction in DU145 cells ... 180

Figure 5.15 Optimisation of DU145 transfection efficiency ... 181
FIGURE 5.16 Induction of AR up-regulated CXCR4 protein in co-transfected DU145 cells. ... 182
FIGURE 5.17 CXCR4 protein expression was unaffected by tetracycline in AR-negative DU145 cells.. 182
FIGURE 5.18 CXCR4 protein expression was not affected by AR induction in subsequent DU145 co-transfection experiments... 183
FIGURE 6.1 The expression of CXCR7 and CXCR4 protein in 2D cultures of PCA cells........ 190
FIGURE 6.2 The CXCR7 inhibitory antibody binds to its target receptor in 2D culture. 191
FIGURE 6.3 PCA cell line growth was unaffected by treatment with SDF-1A and/or ITAC. 193
FIGURE 6.4 The effects of CXCR7, CXCR4 or CXCR3 inhibitory antibodies on PCA cell proliferation... 195
FIGURE 6.5 The CXCR7 inhibitory antibody reduced LNCaP cell growth rates in CS-FBS... 197
FIGURE 6.6 The expression of CXCR7 and CXCR4 protein in 2D and 3D cultures of PCA cells. .. 198
FIGURE 6.7 Expression of CXCR7 and CXCR4 protein over time in 3D cultures of PC3 cells. .. 199
FIGURE 6.8 The formation of spheroids in 3D cultures of PC3 cells over time............... 201
FIGURE 6.9 Expression of integrin b1, MMP-11 and b-Laminin proteins in PC3 stellate projections.. 203
FIGURE 6.10 The expression of CXCR7 protein in stellate projections of PC3 cells in 3D culture. ... 205
FIGURE 6.11 The expression of CXCR4 protein in PC3 stellate projections in 3D culture. 206
FIGURE 6.12 Co-localisation of CXCR7 and CXCR4 protein expression in stellate projections of PC3 cells.. 207
FIGURE 6.13 Inhibition of CXCR7 or CXCR4 did not impact on PC3 spheroid growth....... 208
FIGURE 6.14 Inhibition of CXCR7 and/or CXCR4 did not impact on PC3 stellate projections in 3D culture. .. 208
FIGURE 6.15 Functional inhibition of integrin b1 altered PC3 spheroid morphology....... 211
FIGURE 6.16 Inhibition of integrin b1 down-regulated CXCR7 protein expression in PC3 cells. ... 213
FIGURE 6.17 CXCR4 protein expression was reduced after incubation with integrin b1 antibody in PC3 cells. ... 215
FIGURE 7.1 Proposed mechanism for the regulation of protein expression by ECM interactions in PCA cells... 231
LIST OF TABLES

TABLE 1.1 THE GLEASON SYSTEM FOR GRADING AND PROGNOSIS OF PCA BIOPSY TISSUE SAMPLES........ 14
TABLE 1.2 Staging of PCA biopsy tissue samples using the Tumour Node and Metastasis (TNM) staging system. .. 15
TABLE 1.3 Side effects of commonly used treatments for PCA in the clinic... 18
TABLE 1.4 PCA Biomarkers under investigation for clinical development. ... 20
TABLE 2.1 PCA cell lines used for investigations in this research.. 58
TABLE 2.2 Reagent volumes and cell densities used for 3D culture.. 59
TABLE 2.3 Primary antibodies used for immunocytochemistry studies.. 62
TABLE 2.4 Composition of SDS-PAGE gels.. 70
TABLE 2.5 Primary antibodies used for Western blot analysis. ... 71
TABLE 2.6 Components of a DNA sequencing PCR.. 75
TABLE 2.7 Cycling conditions used for sequencing PCR reactions.. 75
TABLE 2.8 Components of PCR reactions used for amplification of AR insert from PSG5-AR vector for use in Gateway® cloning. ... 77
TABLE 2.9 PCR cycling conditions for AR amplification as part of Gateway® cloning. 77
TABLE 2.10 Restriction enzyme digestions: components and conditions used. 78
TABLE 2.11 Components of DNA ligation reactions. .. 80
TABLE 2.12 Oligonucleotide linker sequences. .. 81
TABLE 8.1 Primers used for sequencing the AR gene. ... 233
TABLE 9.1 The sequences of primers used for RT-PCR. .. 234
List of Abbreviations

2D = Two-dimensional
3D = Three-dimensional
ADT = Androgen deprivation therapy
AMACR = α-Methylacyl-coA racemase
ANOVA = Analysis of variance
APS = Ammonium persulphate
AR = Androgen receptor
ARE = Androgen responsive element
ATCC = American type culture collection
BCa = Breast cancer
Bcl-2 = B-cell lymphoma 2
BPH = Benign prostatic hyperplasia
BSA = Bovine serum albumin
Cat. No. = Catalogue Number
CCR1 = CC chemokine receptor 1
CCR5 = CC chemokine receptor 5
CCR6 = CC chemokine receptor 6
CCR7 = CC chemokine receptor 7
cDNA = Complementary DNA
CNS = Central nervous system
CRPC = Castration-resistant prostate cancer
CRS = Cell recovery solution
CS-FBS = Charcoal-stripped FBS
CT = Computed tomography
CTC = Circulating tumour cell
CTD = Carboxy-terminal domain
CXCR1 = CXC chemokine receptor 1
CXCR2 = CXC chemokine receptor 2
CXCR3 = CXC chemokine receptor 3
CXCR4 = CXC chemokine receptor 4
CXCR7 = CXC chemokine receptor 7
CYP17 = Cytochrome P450 17α-hydroxylase/17,20-lyase
DAPI = 4’,6-diamidino-2-phenylindole dihydrochloride
DBD = DNA-binding domain
DC = Dendritic cell
DHT = Di-hydroxytestosterone
DIC = Differential interference contrast microscopy
DNA = Deoxyribonucleic acid
dNTP = Deoxyribonucleotide triphosphate
DRE = Digital rectal exam
DS = Double stranded
ECM = Extracellular matrix
EGF = Epidermal growth factor
EHS = Engelbreth-holm-swarm (EHS)
ELISA = Enzyme-linked immunosorbent assay
EMT = Epithelial-to-mesenchymal transition
EPCA = Early PCa antigen
ERG = Avian V-ETS erythroblastic virus E26 oncogene homolog
ERK 1/2 = Extracellular Signal-regulated kinase 1/2
ETS = E-twenty six
E.coli = Escherichia coli
FAK = Focal adhesion kinase
FBS = Fetal bovine serum
fPSA = Free prostate specific antigen
GAPDH = Glyceraldehyde 3-phosphate dehydrogenase
GCSF = Granulocyte colony stimulating factor
GEM = Genetically engineered mouse
GnRH = Gonadotropin-releasing hormone
GPCR = G protein-coupled receptor
HEK = Human embryonic kidney
Her2 = Human epidermal growth factor receptor 2
HIV = Human immunodeficiency virus
hK2 = Human kallikrein 2
HRP = Horseradish peroxidase
HSP = Heat shock protein
IGF = Insulin-like growth factor
IL-6 = Interleukin 6
IL-8 = Interleukin 8
ITAC = Interferon-inducible T cell alpha chemoattractant
JAK-STAT = Janus activated kinase-signal transducer and activator of transcription
KLF5 = Krüppel-like factor 5
LBD = Ligand binding domain
LH = Leutenising hormone
LHRH = Leutenising hormone releasing hormone
MAPK = Mitogen-activated protein kinase
mAR = Membrane androgen receptor
MIP-1α = Macrophage inflammatory protein-1 alpha
MMP = Matrix metalloproteinase
MMP-11 = Matrix metalloproteinase 11
MMP-9 = Matrix metalloproteinase 9
MRI = Magnetic resonance imaging
mTOR = Mammalian target of rapamycin
MTT = 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MW = Molecular weight
N-Cadherin = Neural-cadherin
NCBI = National Centre for Biotechnology Information
NEB = New England Biolabs
NK = Natural killer
NTD = N (amino)-terminal domain
PAGE = Polyacrylamide gel electrophoresis
PBS = Phosphate-buffered saline
PCa = Prostate cancer
PCA3 = PCa antigen 3
PCR = Polymerase chain reaction
PFA = Paraformaldehyde
PGA = Polyglycolide
PI3K = Phosphoinositide 3-Kinase
PICP = C-Terminal pro-peptide of pro-collagen type 1
PIN = Prostatic intraepithelial neoplasia
PINP = N-Terminal pro-peptide of pro-collagen type 1
PLA = Polylactide
PLC = Phospholipase C
PLG/PLGA = Poly(lactide-co-glycolide)
PSA = Prostate specific antigen
PTEN = Phosphatase and tensin homolog
PVDF = Polyvinylidene fluoride
Rb = Retinoblastoma
RIPA = Radio-immunoprecipitation assay
RNA = Ribonucleic acid
ROI = Region of interest
RPMI = Roswell Park Memorial Institute
RT = Room temperature
RT-PCR = Reverse transcriptase polymerase chain reaction
SDF-1α = Stromal-derived factor-1 alpha
SDS = Sodium dodecyl sulphate
SDS-PAGE = Sodium dodecyl sulphate-polyacrylamide gel electrophoresis
S.E.M = Standard error of the mean
SFM = Serum-free culture medium
SIV = Simian immunodeficiency virus
TBS = Tris-buffered saline
TBST = Tris-buffered saline-tween 20
TC = Tissue culture
TEMED = Tetramethylethylenediamine
TGFβ = Transforming growth factor beta
TIMP = Tissue inhibitor of metalloproteinase
TIMP-2 = Tissue inhibitor of metalloproteinase 2
TMPRSS2 = Transmembrane protease, serine 2
TNM = Tumour, node and metastasis
TRAMP = Transgenic adenocarcinoma of the mouse prostate
uPA = Urokinase plasminogen activation axis
V = Volts
VEGF = Vascular endothelial growth factor
v/v = Volume per volume
w/v = Weight per volume
DECLARATION BY AUTHOR

This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the General Award Rules of Griffith University, immediately made available for research and study in accordance with the Copyright Act 1968.

I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material.

Debra L. Kiss
PUBLISHED WORKS BY THE AUTHOR INCORPORATED INTO THE THESIS

Included in this thesis are two published paper, the first of which has been incorporated into Chapters 3 and 4, and was co-authored with other researchers. My contribution to the co-authored paper was in undertaking Western blots and immunocytochemistry, and participating in scientific discussion relating to the manuscript.

The bibliographic details for these papers are as follows:-

Additionally, another manuscript has been published based on the results presented in Chapter 6. As first author, my contribution to this manuscript consisted of performing western blots, immunocytochemistry, image analysis, data interpretation and preparation of the manuscript. The details for this manuscript are as follows:-

Appropriate acknowledgements of those who contributed to the research but did not qualify as authors are included in the published paper.

__

Debra L. Kiss

__

Professor Vicky M. Avery
Integrin regulation of EMT markers in tumour-stromal co-cultures of prostate cancer. Windus, L.C. Glover, T. Kiss, D.L. Avery, V.M. Currently under review at *Molecular Cancer*.
CONTRIBUTIONS OF OTHERS TO THE THESIS

Professor Vicky Avery has assisted with discussion and establishment of thesis aims, research hypotheses, choice of methods, critical analysis of experimental results, scientific discussions and in the structuring of the thesis. Professor Avery also performed editing and proofreading of the thesis itself.

Dr Greg Fechner assisted in structuring the aims of the research, project guidance, scientific discussion, and in editing and proofreading of the thesis.

Dr Louisa Windus provided assistance with project supervision, scientific discussion and in editing and proofreading of the thesis. Dr Windus also performed experimental work including immunocytochemistry, Western blots, image analysis and statistical analysis. The specific contributions of Dr Windus to the experimental results presented in this thesis were as follows:-
- Chapter 3: Figures 3.1, 3.3 - 3.8, and 3.10 - 3.12
- Chapter 4: Figures 4.1, 4.13 - 4.17, and 4.21 - 4.22
- Chapter 6: Figures 6.2, and 6.15 - 6.17

Dr Anthony Beckhouse (formerly of Systems Biology, Eskitis Institute for Cell and Molecular Therapies, Griffith University) assisted with the construction of the tetracycline-inducible AR vector in Chapter 5. Dr Beckhouse contributed advice on cloning methodology, and assistance with cloning procedures in the laboratory.

Dr Grant Stuchbury provided scientific discussion, in addition to proofreading and editing of the thesis. Dr Sabine Fletcher and Dr Amy Jones also assisted in thesis proofreading and editing.

xxi
ACKNOWLEDGEMENTS

This project was undertaken at Discovery Biology at the Eskitis Institute for Cell and Molecular Therapies, Griffith University. My sincere thanks go to my supervisors Vicky Avery, Greg Fechner and Louisa Windus. I thank Vicky for giving me the opportunity to learn and develop as a member of her laboratory, and for providing great insight and guidance; and for her willingness to go the extra distance to support the completion of this project in any way she could. During the early stages of this project, Greg provided valuable guidance and always made himself available to provide feedback and perspective with a cheery smile. In the later stages of my project, I am truly grateful for the invaluable assistance that Louisa has provided, regarding both the completion of experimental work and her tireless efforts to help with my thesis preparation.

I would also like to thank my colleagues and friends at Discovery Biology for their help along the way; particularly, Grant, Sabine and Amy for giving up their time to help proofread and edit my thesis.

The great research environment, fantastic facilities and support of the Eskitis Institute for Cell and Molecular Therapies have made this undertaking a truly rewarding experience. Griffith University has provided excellent support and assistance; particularly, the Griffith Graduate Research School, the Higher Degree Research Student Centre, and the Faculty of Science, Environment, Engineering and Technology. I would also like to express my gratitude to the Australian Government for providing the Australian Postgraduate Award PhD Scholarship.

A special mention goes to my family for their generosity, love and support. A special thanks to my Mum for bestowing great words of advice and for sharing her innate positivity. To my Dad, for his unfailing belief that I will do well, no matter what. To George, for inspiring me to challenge myself, question constantly, and think differently. And my big sister Amanda, for always cheering me on, and for letting me kidnap her house to write my thesis. Finally, some close friendships have made this journey so much easier. In particular, thank you to my dear friends Kelly, Bec and Michael. You have been a great source of joy. Thank you for believing in me.

xxii