Dressing and Securement of Peripheral Arterial Catheters:
A Pilot Randomised Controlled Trial

Heather Reynolds
BA, BHthSc (Nursing), MN, MAP (Health Care Research)
CertTeach, CertCCN, CertAN

School of Nursing and Midwifery
Griffith Health
Griffith University

Submitted in fulfilment of the requirements of the degree of
Doctor of Philosophy

June 2014
Abstract

Purpose
The purpose of this research was to assess the feasibility of the trial design and elements for future extensive study to provide evidence of the effectiveness of novel dressing/securement technologies to prevent catheter failure in peripheral arterial catheters in a larger research setting.

Background
Peripheral arterial catheters are a type of intravascular catheter that is widely used in the care of critically ill patients. The catheter insertion site is usually covered with a commercially produced transparent dressing to maintain the position of the catheter, as well as endeavouring to prevent microbial entry to the wound. Arterial catheters may accidentally fall out, become blocked, or become infected, causing catheter failure, interrupted therapy, painful reinsertion, and decreased patient satisfaction. The infection risks of arterial catheters have often been underestimated. Inadequate peripheral intravascular catheter securement remains a poorly researched area of patient care, with a paucity of quality studies. Improved securement would likely prevent many cases of catheter failure.

Aims and Objectives
The aim was to determine initial effectiveness of one dressing and two securement methods with the potential to minimise failure in peripheral arterial catheters
compared with usual care, in a pilot study. Specified feasibility objectives for this
pilot trial were to be considered successful if 90 out of 120 patients (75%) fulfilled
the feasibility criteria regarding recruitment, delivery and adherence, retention, and
patient/staff satisfaction with the study products. This would show that the research
methods were suitable for use in a larger trial.

Design

A four-arm, parallel, single site, superiority pilot trial of randomised controlled
design was performed to provide initial background research for a potential future,
larger randomised controlled trial. It was intended to function as a test to ensure that
the future larger trial was designed optimally, and able to be implemented in practice,
and that the novel interventions were feasible choices.

Interventions

Patients were randomised to three experimental groups of a bordered polyurethane
dressing, a sutureless securement device and tissue adhesive, and one control group
of a usual care polyurethane dressing.

Population and sample

The study population consisted of patients with arterial catheters inserted in the
operating theatre and admitted to the intensive care unit post-operatively at a
metropolitan, tertiary referral, teaching hospital. The study sample of 120, with 30 per
group, was drawn from all surgical patients for post-operative admission to the intensive care unit who met the inclusion criteria.

Data collection and management

A standardised data collection tool was developed and then adapted by Griffith University Information Technology Services for use on a personal laptop computer by the Principal Investigator. A paper data collection form mirrored some of the computer-based data points and was kept at the bedside for convenient documentation by intensive care nurses. Arterial catheter failure and reason for unplanned removal (occlusion, dislodgement, loss of monitor trace, and pain), as well as staff satisfaction and timing for application, and patient and staff satisfaction for removal of the products were recorded. Predefined criteria for type of failure, time, and satisfaction were compared with observed results.

Data analyses

The statistical analyses of this pilot work were mainly descriptive, and reporting strategies used the confidence interval approach for estimation of sample size to establish feasibility. If 75% of patients received the study intervention and protocol correctly, and had ease and satisfaction scores for the study dressing and securement devices of ≥ 7 on Numerical Rating Scale scores 1-10, future study would be feasible. Survival analyses were performed to assess the effect of study group on outcomes over time. Univariable and multivariable Cox proportional hazards regression models assessed independent relationships between explanatory variables and the
dichotomous outcome of device failure. Cost effectiveness analysis was performed by applying value of information analysis to avoiding catheter failure.

Results

There were 132 patients recruited over 32 weeks. Arterial catheter failure ranged from 2/32 (6.3%) for tissue adhesive, 4/30 (13.3%) for bordered polyurethane to 5/31 (16.1%) for the sutureless securement device, and 6/30 (20%) for the control usual care polyurethane dressing (Fisher’s exact test \(p = .14, .73, \) and .75 respectively). The effect sizes of bordered polyurethane, the sutureless securement device, and tissue adhesive were absolute reductions of 6.7%, 3.9%, and 14% compared to controls. Cox regression analysis confirmed non-significant differences between the control and all experimental group failure rates. However, being a current smoker, female, and skin colour “other than moderate brown” were significant predictors of failure \((p = .05) \). Kaplan-Meier survival curves confirmed no difference in failure between all experimental groups and the control \((\text{log-rank} \ p = .56) \). Research pre-study commencement workload was 151 hours, and mean total daily time over 12 days taken for all research tasks was 5.2 hours/day. All interventions had feasible numerical rating scale scores for patient product removal and overall patient satisfaction. Tissue adhesive and the sutureless securement device had statistically significant worse scores for staff ease of application compared to controls \((\text{both} \ p < .05) \), although tissue adhesive still had a feasible score. Cost analysis suggested that tissue adhesive and bordered polyurethane were the most cost effective of the interventions and the control.
ARTERIAL CATHETER DRESSING AND SECUREMENT

Discussion

All three study interventions were shown to be feasible options. This pilot trial showed that the novel technologies were at least as effective as the present method of a polyurethane dressing for dressing and securement of arterial catheters, and may be cost effective.

Conclusion

This pilot study provides evidence that it is feasible to perform a larger randomised controlled trial comparing these dressing and securement methods for arterial catheters inserted in the operating theatre, and cared for in the intensive care unit.
Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Heather Reynolds
Contents

Abstract..i
Statement of Originality .. vi
Contents ... vii
List of Figures ... xii
List of Tables ... xiv
List of Abbreviations ... xv
Acknowledgements ... xvii
Presentations and Publication Derived From This Research ... xix

Chapter 1: Introduction ... 1
 1.1 Introduction .. 1
 1.2 Background ... 2
 1.3 Dressings and Securement for Peripheral Arterial Catheters .. 5
 1.4 Research Purpose, Problem, Question Aims and Objectives .. 6
 1.4.1 Purpose .. 6
 1.4.2 Problem .. 6
 1.4.3 Research question ... 6
 1.4.4 Aims .. 6
 1.4.5 Objectives .. 7
 1.5 Research Title and Description ... 8
 1.6 Significance .. 8
 1.7 Clinical Practice Guidelines ... 9
 1.8 Thesis Structure ... 9
 1.9 Conclusion ... 10

Chapter 2: Review of the Literature on Dressing and Securement of Peripheral Arterial Catheters .. 12
 2.1 Introduction .. 12
 2.2 Peripheral Arterial Catheter Description and Function .. 14
 2.2.1 History of blood pressure measurement with arterial catheters 19
 2.3 Peripheral Arterial Catheter Use and Potential Complications .. 21
 2.4 Peripheral Arterial Catheter Mechanical Complications .. 24
 2.5 Peripheral Arterial Catheter Infectious Complications ... 27
 2.5.1 Catheter-related infection ... 32
 2.5.2 Pathogenesis of catheter-related blood stream infection .. 34
 2.5.3 Catheter-related blood stream infection definition .. 37
 2.5.4 Overview of surveillance of catheter-associated blood stream infection 40
 2.5.5 Infectious incidence in intensive care units: arterial catheters versus central venous catheters .. 43
 2.5.6 Infection risk: duration of catheter placement ... 47
Chapter 4: Results

4.1 Introduction .. 162
4.2 Sample Flow Throughout Study 162
 4.2.1 Baseline demographics and characteristics of study participants. 166
 4.2.2 Clinical characteristics of study participants. 168
 4.2.3 Arterial catheter insertion characteristics. 171
4.3 Intervention Effect on Primary and Secondary Outcomes 173
 4.3.1 Primary outcome. ... 173
 4.3.2 Secondary outcomes. ... 176
4.4 Survival Analyses ... 177
 4.4.1 Kaplan-Meier curve .. 177
 4.4.2 Cox regression analysis ... 178
4.5 Feasibility Assessment ... 182
 4.5.1 Eligibility/Recruitment ... 182
 4.5.2 Attrition .. 183
 4.5.3 Protocol delivery for intervention 184
 4.5.4 Numerical rating scales ... 184
4.6 Assessment of Workload of Research Personnel 187
 4.6.1 Pre-study workload. .. 187
4.6.2 Workload for recruitment .. 188
4.6.3 Workload for data entry .. 188
4.6.4 Workload post-protocol implementation 188
4.7 Costs ... 192
4.7.1 Cost effectiveness .. 192
4.7.2 Value of information analysis ... 194
4.8 Safety ... 196
4.9 Summary .. 196

Chapter 5: Discussion .. 197
5.1 Introduction .. 197
5.2 Conclusions: Feasibility Assessment ... 200
 5.2.1 Study products ... 201
 5.2.1.1 Bordered polyurethane .. 202
 5.2.1.2 Sutureless securement device .. 203
 5.2.1.3 Tissue adhesive .. 206
 5.2.2 Satisfaction .. 208
 5.2.3 Costs ... 210
 5.2.4 Eligibility .. 212
 5.2.5 Recruitment ... 213
 5.2.6 Retention and attrition .. 214
 5.2.7 Adherence ... 214
 5.2.8 Resources ... 215
 5.2.8.1 Research time ... 216
 5.2.8.2 Facilities .. 218
 5.2.8.3 Scheduling ... 219
 5.2.9 Research management ... 219
 5.2.9.1 Coordination ... 219
5.3 Data Handling and Statistical Analyses ... 221
 5.3.1 Randomisation .. 222
 5.3.2 Baseline and clinical characteristics 222
 5.3.3 Quantitative analyses .. 223
 5.3.3.1 Cox multivariable regression analysis 225
5.4 Recommendations .. 229
5.5 Implications for Research .. 231
5.6 Limitations .. 231
5.7 Conclusion ... 232

Chapter 6: Conclusion .. 234
6.1 Introduction ... 234
6.2 Conclusions ... 236
6.3 Summary ... 238

References .. 239

Appendices ... 286
List of Figures

Figure 2.1. Vygon® Arterial Leader-Cath (PE) (Vygon®, Ecouen, 2013)........ 17
Figure 2.2. Arrow® arterial catheter (Arrow®, Reading, 2013).................... 18
Figure 2.3. Access ports (George Philips Medical Engineering, Mumbai, 2013).
... 49
Figure 2.4. Standard polyurethane dressing: Tegaderm™ 1624W (3M™, St Paul,
2013b). .. 60
Figure 2.5. Bordered polyurethane dressing: Tegaderm™ I.V. Advanced
Securement 1683 (3M™, St Paul, 2013a). ... 61
Figure 2.6. Sutureless Securement Device: StatLock® Arterial Select
Stabilisation Device (Bard®, Salt Lake City, 2013), with standard
polyurethane dressing (3M™, St Paul, 2013b)................................. 61
Figure 2.7. Tissue Adhesive: Histoacryl® (B Braun, Bella Vista, 2013). 62
Figure 3.1. Cause effect phenomena conceptual framework showing the
contribution of patient factors, situational factors, and types of
dressings and securement devices to arterial catheter failure. 107
Figure 3.2. Methodological conceptual framework of the contributions of a pilot
trial to a large randomised controlled trial that informs the literature,
and provides decision makers with knowledge of best research
evidence, while acknowledging clinical and patient influences for
decision makers to guide Evidence-Based Practice (Craig et al., 2008;
Sackett et al., 1996; Thabane et al., 2010). ... 110
Figure 4.1. Participant flow chart for control and combined experimental groups
following Consolidated Standards of Reporting Trials (CONSORT)
guidelines (Altman et al., 2001). ... 164
Figure 4.2 Participant flow of group allocation and exclusion for control and
three treatment groups following CONSORT guidelines (Altman et al.)
... 165
Figure 4.3. Catheter flow rates by group per 1,000 catheters................. 175
Figure 4.4. Kaplan-Meier survival curves showing incidence of the primary outcome over time between groups, and the number of arterial catheters still in situ at various time points since insertion........... 178

Figure 4.5. Probability of cost effectiveness of dressings/interventions under different Willingness to Pay thresholds, presented in Cost Effectiveness Acceptability Curves. .. 193

Figure 4.6. Expected Net Benefit of Sampling for alternative future trial designs. .. 195
List of Tables

Table 2.1 Types of Intravascular Devices: Details of Use and Summary of Current Evidence –Based Judgement of Infection Risk Adapted From Mermel et al., 2009 .. 28

Table 2.2 Clinical Definitions of Intravascular Catheter-Related Infections Adapted from Mermel et al., 2009; Pearson, Hierholzer & Garner, 1996 ... 31

Table 2.3 Summary of International Studies Comparing Arterial Catheter and Central Venous Catheter Infection Rates .. 44

Table 2.4 Summary of Sutureless Securement Device Studies Adapted from Alekseyev et al. (2012) .. 81

Table 4.2 Clinical Characteristics of Study Participants by Group 169

Table 4.3 Characteristics of Arterial Catheter Insertion by Group 172

Table 4.4 Primary Outcome and Secondary Outcomes by Group 174

Table 4.5 Predictors of Catheter Failure Using Cox Regression 180

Table 4.6 Recruitment Numbers by Month for Eight Months 183

Table 4.7 Comparison of Satisfaction Scores 0–10 by Intervention and Control Arms ... 186

Table 4.8 Activity Times of Principal Investigator Pre-Study Commencement in Hours ... 188

Table 4.9 Time Taken for All Data Entry Tasks for 12 Sequential Patients in Minutes ... 190

Table 4.10 Time Taken for Research Tasks by Day for 12 Sequential Days in Minutes ... 191

Table 4.11 Cost Effectiveness Analysis Results .. 193

Table 4.12 Value of Information Measures for Alternative Future Trial Designs.... 195
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Arterial Catheter</td>
</tr>
<tr>
<td>ACIPC</td>
<td>Australasian College for Infection Prevention and Control</td>
</tr>
<tr>
<td>AICA</td>
<td>Australian Infection Control Association</td>
</tr>
<tr>
<td>AIMS-ICU</td>
<td>Australian Incident Monitoring Study in Intensive Care</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ANZICS</td>
<td>Australian and New Zealand Intensive Care Society</td>
</tr>
<tr>
<td>AVATAR</td>
<td>Australian Vascular Access Teaching and Research Group</td>
</tr>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>BPU</td>
<td>Bordered Polyurethane</td>
</tr>
<tr>
<td>CABSI</td>
<td>Catheter Associated Blood Stream Infection</td>
</tr>
<tr>
<td>CDC</td>
<td>Centres for Disease Control</td>
</tr>
<tr>
<td>CEAC</td>
<td>Cost Effectiveness Acceptability Curve</td>
</tr>
<tr>
<td>cfu</td>
<td>colony forming units</td>
</tr>
<tr>
<td>CHRISP</td>
<td>Centre for Healthcare Related Infection Surveillance and Prevention</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated Standards for Reporting Trials</td>
</tr>
<tr>
<td>CRBSI</td>
<td>Catheter Related Blood Stream Infection</td>
</tr>
<tr>
<td>CRI</td>
<td>Catheter Related Infection</td>
</tr>
<tr>
<td>EBP</td>
<td>Evidence Based Practice</td>
</tr>
<tr>
<td>ESD</td>
<td>External Stabilisation Device</td>
</tr>
<tr>
<td>ENBS</td>
<td>Expected Net Benefit of Sampling</td>
</tr>
<tr>
<td>EVPI</td>
<td>Expected Value of Perfect Information</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drugs Administration</td>
</tr>
<tr>
<td>GCP</td>
<td>Good Clinical Practice</td>
</tr>
<tr>
<td>HIES</td>
<td>Hospital infection Epidemiology and Surveillance Unit</td>
</tr>
<tr>
<td>HICPAC</td>
<td>Healthcare Infection Control Practices Advisory Committee</td>
</tr>
<tr>
<td>HISWA</td>
<td>Health Infection Surveillance Western Australia</td>
</tr>
<tr>
<td>HR</td>
<td>Hazard Ratio</td>
</tr>
<tr>
<td>ICH</td>
<td>International Conference of Harmonisation</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit</td>
</tr>
<tr>
<td>IDSA</td>
<td>Infectious Diseases Society of America</td>
</tr>
<tr>
<td>INS</td>
<td>Infusion Nurses’ Society</td>
</tr>
<tr>
<td>ITT</td>
<td>Intention to Treat</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>LCBSI</td>
<td>Laboratory Confirmed Blood Stream Infection</td>
</tr>
<tr>
<td>MID</td>
<td>Minimal Importance Difference</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>NB</td>
<td>Net Monetary Benefit</td>
</tr>
<tr>
<td>NC</td>
<td>Needleless Connector</td>
</tr>
<tr>
<td>NEAF</td>
<td>National Ethics Application Form</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NHSN</td>
<td>National Health and Safety Network</td>
</tr>
<tr>
<td>NICE</td>
<td>National Guidelines for Health and Clinical Excellence</td>
</tr>
<tr>
<td>NRS</td>
<td>Numerical Rating Scale</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>OT</td>
<td>Operating Theatre</td>
</tr>
<tr>
<td>PFGE</td>
<td>Pulsed-Field Gel Electrophoresis</td>
</tr>
<tr>
<td>PI</td>
<td>Principal Investigator</td>
</tr>
<tr>
<td>PICC</td>
<td>Peripherally Inserted Central Catheter</td>
</tr>
<tr>
<td>QCAT</td>
<td>Queensland Civil and Administrative Tribunal</td>
</tr>
<tr>
<td>RBWH</td>
<td>Royal Brisbane and Women’s Hospital</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised Controlled Trial</td>
</tr>
<tr>
<td>RR</td>
<td>Relative Risk</td>
</tr>
<tr>
<td>SID</td>
<td>Sufficiently Important Difference</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SPU</td>
<td>Standard Polyurethane</td>
</tr>
<tr>
<td>SSA</td>
<td>Site Specific Approval</td>
</tr>
<tr>
<td>SSD</td>
<td>Sutureless Securement Device</td>
</tr>
<tr>
<td>SSI</td>
<td>Surgical Site Infection</td>
</tr>
<tr>
<td>TA</td>
<td>Tissue Adhesive</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VOI</td>
<td>Value of Information</td>
</tr>
<tr>
<td>VICNISS</td>
<td>Victorian Healthcare Associated Infection Surveillance System</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WTP</td>
<td>Willingness to Pay</td>
</tr>
</tbody>
</table>
Acknowledgements

Thank you to my very special supervisory team of principal supervisor Professor Claire Rickard, associate supervisor Dr Marion Tower, and external supervisor at Royal Brisbane and Women’s Hospital, Associate Professor Kersi Taraporewalla for outstanding professional guidance, wonderful inspiration, expert intellectual input and recommendations, dedication, and timely reassurance which made the completion of this thesis a reality.

Sincere thanks to all those at Royal Brisbane and Women’s Hospital involved in the research study, in particular the medical directors of the Departments of Anaesthesia and Perioperative Medicine and Intensive Care Medicine, Associate Professor Michael Steyn and Professor Jeffrey Lipman, as well as the Nursing Director of Perioperative Medicine, Kate Pearson, who all willingly gave their approval. Also, thank you to unit managers Vicki Swaine, Anna McIntyre, Madonna Cameron, and Amanda Vann, and acting unit Manager Patrick Doyle, who together provided wonderful ongoing support. A further thank you to the anaesthetists, anaesthetic nurses and technicians, and the perioperative, post-anaesthetic care, and the intensive care staff who enthusiastically participated in the research.

I especially appreciate the invaluable contributions of my colleagues Associate Professor Kersi Taraporewalla for his generous help and participation in the product photography, Gabor Mihala for his patient and knowledgeable statistical assistance, Haitham Tuffaha for his innovative advice on the economic evaluation,
Nicole Marsh for her outstanding contribution to project management, and Professor Joan Webster for her astute guidance and expert opinion.

I am very appreciative that the product photography was performed in the Department of Anaesthesia and Perioperative Medicine at the Royal Brisbane and Women’s Hospital with staff volunteers, and permission was granted for publication by the Director of Anaesthesia and Perioperative Medicine, Associate Professor Michael Steyn.

Finally, thank you to my family, in particular Trevor and Amy, for their immeasurable understanding and patience, and to all my friends and colleagues at Griffith University and Royal Brisbane and Women’s Hospital who have given invaluable encouragement throughout this research project.
Presentations and Publication Derived From This Research

Oral presentation

Reynolds, H., Mihala, G., Taraporewalla, K., Tower, M., & Rickard, C.M.

Invited oral presentation and poster

Reynolds, H., Mihala, G., Taraporewalla, K., Tower, M., & Rickard, C.M.

Oral presentation and poster

Reynolds, H., Mihala, G., Taraporewalla, K., Tower, M., & Rickard, C.M.
(2013). Securing arterial lines effectively in the operating theatre and ICU: A pilot trial. Royal Brisbane and Women’s Hospital Annual Symposium, Brisbane, Australia.

Poster: Awarded best poster

Reynolds, H., Mihala, G., Taraporewalla, K., Tower, M., & Rickard, C.M.
Poster

Oral presentation

Publication