Investigation into Human Galectin-1
Structure and Function

Stacy Arletta Scott
BSc (Hons) Biomedical Science

Institute for Glycomics
Science, Environment, Engineering and Technology
Griffith University

Submitted in the fulfilment of the requirements of the
degree of Doctor of Philosophy

September 2009
Statement of Originality

The work presented in this thesis was undertaken in the Institute for Glycomics at Griffith University (Gold Coast campus, Australia). The work was conducted between 2005 and 2009 under the supervision of Dr. Helen Blanchard and has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Signed:

Stacy A. Scott
September 2009

Dr. Helen Blanchard
September 2009
Thesis Contributions

Approximately 95% of the work reported in thesis was performed directly by myself. Data supplied by others was conducted in collaboration.

Sections of the thesis where others contributed data:

Chapter 3: The testing of oxidized human galectin-1 activity on human leukemia MOLT-4 cells was conducted in collaboration with Emily Sullivan, a research student from Dr. Steve Ralph’s research group (Griffith University, Australia). I prepared the protein and planned the cell culture experimental design. Emily cultured and treated the MOLT-4 cells, stained the cells for analysis and recorded FACS measurements.

Chapter 3 and 6: The crystallisation trials that used Peak-3/Buffer_B (17 kDa) oxidized human galectin-1 in the absence and presence of farnesyl diphosphate were planned by myself, but set up with the help of Tatjana Seidens and Marie Destro, two visiting students to the Blanchard group, Institute for Glycomics.

Chapter 4: X-ray diffraction data on some galectin-1 crystals was collected by Xing Yu, a Ph.D student of Dr. Helen Blanchard’s research group, at the Stanford Synchrotron Radiation Laboratory (SSRL) in California, USA. All other synchrotron data on galectin-1 crystals was collected by myself at the Advanced Light Source (ALS) synchrotron.

Chapter 6: The STD NMR data of Peak-3/Buffer_B (17 kDa) oxidized human galectin-1 binding to farnesyl diphosphate was also provided by Xing Yu.

Editorial assistance was provided by Dr. Helen Blanchard, Dr. Steve Ralph and Dr. Darren Grice.
Acknowledgements

First and foremost I give my greatest thanks to my Ph.D supervisor, Dr. Helen Blanchard. Your analysis of experimental data and editing of manuscripts is done with masterful attention to detail, and it is your high standards and straightforwardness that have greatly helped me to improve my research skills. Thank you for your guidance and support along the way and for being open and accessible for discussion during my Ph.D. I have been provided with many opportunities to attend courses and conferences over the years to help further my understanding of structural biology, so I thank you for that also.

Thank you to Xing Yu and Patrick Collins, fellow structural biology Ph.D students of Helen’s, and all other members of the Institute for Glycomics 2005-2009 for your willingness to answer my thousands of questions over the years.

Thank you to Emily Sullivan, and student’s of Helen’s group; Tatjana Seidens, Marie Destro and Xing Yu for providing some of the data presented in this thesis.

Thank you to three wonderful women, Jarette, Sarah and Andrea. Thanks for your support girls, you guys are the best. My very special thanks to my Mum, Dad, Nicole and Steve for their encouraging words during my dark self-deprecating days, and also for sharing in my times of exciting new results. Your love and endless support and encouragement make anything seem possible, and my Ph.D would truly have been just too hard without your help. I hope you will be pleased to hear that in the end I can say I have really enjoyed the challenge and look forward to the next.
Research Publications

Publications relevant to this thesis:

2) Stacy A. Scott, Andrea Bugarcic and Helen Blanchard, Characterisation of oxidized recombinant human galectin-1 (accepted for publication in *Protein and Peptide Letters*, 2009, 16(10). Impact factor 1.281.

4) Stacy A. Scott, Steve J. Ralph, Helen Blanchard, Evidence for a sulphenic acid intermediate between reduced and oxidized forms of human galectin-1 (Manuscript in preparation, to be submitted 2009).

Other publications:

Conference oral presentations

Stacy Scott. Investigation into Human Galectin-1 Function and Structure. East Coast Protein Meeting (Coffs Habour, Australia, 2007).

Conference poster presentations

Abstract

Human galectin-1 is a lectin protein that is ubiquitously expressed by most normal adult tissues, and is also over-expressed by many human cancers. When in a reducing environment, human galectin-1 exhibits specific binding affinity for β-galactosides and exists in a non-covalently bound homodimer conformation comprised of two 14.5 kDa subunits. Dimeric human galectin-1 exhibits cross-linking lectin activity because one carbohydrate-binding site per subunit is located at each end of the dimer. Mediated by cross-linking lectin activity, extracellular human galectin-1 is able to cluster specific glycoconjugate receptors on the T cell surface to initiate apoptosis. The apoptotic affects of extracellular galectin-1 upon T cells suggests that secretion of galectin-1 into the tumour stroma indirectly contributes to tumour survival and growth by essentially creating a “shield” from immune surveillance. Human galectin-1 cross-linking lectin activity also promotes cell migration and adhesion, two critical processes in angiogenesis and the invasion of metastatic cancer cells. Consequently, the production of β-galactoside derivatives as a means of specific inhibition of galectin-1 has become a focus in today’s fight against cancer.

For human galectin-1 to maintain cross-linking lectin activity, six cysteine residues within each subunit of the homodimer must be kept from oxidizing to form inter- and/or intramolecular disulphide bonds. Considering most cancers are associated with oxidative stress, it is intriguing to contemplate whether an oxidized form of human galectin-1 functions within a cancerous environment. An oxidized monomeric form of human galectin-1 (14.5 kDa) is known to interact with the cell surface of macrophages and stimulate their release of an axonal regeneration factor(s), however, the role oxidized human galectin-1 may play in tumourigenesis is currently unsubstantiated. Attempts to generate the oxidized monomeric form for further study during this Ph.D resulted in the generation of two forms of oxidized human galectin-1, an oligomer 68 kDa in size and a smaller protein species of apparent molecular weight 17 kDa. Extensive characterisation of these two previously unreported forms determined that the 68 kDa form contains inter- and intramolecular disulphide bonds, whereas the 17 kDa form contains only intramolecular disulphide bonds. Both forms were devoid of lectin activity as anticipated, but did exhibit an ability to protect a leukaemia cell line from hydrogen peroxide induced...
apoptosis. Protection from oxidative assault was not mediated via hydrogen peroxide consumption, rather, protection is suspected to be mediated via interaction with a receptor on the cancer cell surface. Attempts to obtain a crystal structure of the 17 kDa oxidized form, both apo and complexed with farnesyl diphosphate (the first reported ligand for oxidized human galectin-1) are ongoing, but given the observed increase in random coil structure within the 17 kDa oxidized form, crystallisation may never occur.

The 14.5 kDa form of oxidized human galectin-1 that exhibits the axonal regeneration activity is thought to be sourced from the extracellular oxidation of reduced dimeric human galectin-1 that is secreted from injured axons. This suggestion supports the existence of an intermediate state between the fully reduced and oxidized state of human galectin-1. Two X-ray crystallographic structures of homodimeric human galectin-1, determined from crystals grown in the presence of lactose (a ligand) during this Ph.D, exhibit oxidized features, and so may provide structural evidence for a putative intermediate state. Specifically, the putative intermediate structure within the asymmetric unit of both crystal structures is a homodimer that has one 14.5 kDa subunit not bound to lactose. Essentially, the homodimer has become partially in-active. Besides the loss of lectin activity, the “lactose-absent” subunit of the homodimer also exhibits loss of secondary structure to random coil, larger size, increased flexibility and weaker stabilizing salt bridge interactions between residues crucial to binding lactose. The loss of lectin activity and loss of secondary structure to random coil are characteristic features of oxidized human galectin-1, but the lactose-absent subunit does not contain disulphide bonds. Excessive crystal contacts, or a lack thereof, does not on its own provide an unequivocal explanation for these unique features either. An alternative finding that the lactose-absent subunit has lost all reducing agent molecules bound to cysteine residues, and exhibits a specific pattern of sulphenic acid formation (hydroxylated cysteines), is suspected to induce these features.

Sulphenic acid formation cannot be ignored as an anomaly within human galectin-1 crystal structures because human galectin-1 is a redox-reactive protein, and sulphenic acid is a physiologically relevant residue for many other redox-reactive proteins. To test the concept of an intermediate state of human galectin-1 that incorporates sulphenic acid, the buffers used to oxidize dimeric human galectin-1 to the 68 kDa and 17 kDa oxidized forms were supplemented with dimedone, a specific probe for sulphenic acid. The generation of
both oxidized protein species was disrupted because correct disulphide formation was inhibited in the presence of dimedone. Correct disulphide bond formation most likely did not occur because dimedone had trapped the protein in an intermediate state that incorporates sulphenic acid residues. Sulphenic acid formation is typically associated with hydrogen peroxide scavenging proteins, such as peroxiredoxins, and this thesis details the first report providing evidence that dimeric human galectin-1 also possesses the ability to consume hydrogen peroxide. Additionally, this thesis shows that human galectin-1 lectin activity is adversely affected prior to inducement of disulphide bridge formation when in the presence of mild concentrations of hydrogen peroxide, which is consistent with the lactose-absent subunit crystal structure phenomenon.

The data presented in this thesis, for the most part, provides evidence for the activity reduced and oxidized human galectin-1 exhibits in oxidizing environments. The reduced form of human galectin-1 has hydrogen peroxide scavenging activity, and the oxidized form stimulates cancer cells into survival mode via a cell surface interaction. The evidence presented in this thesis recommends future investigations test whether these affects are physiologically relevant in the context of solid tumour cancer. Hydrogen peroxide scavenging within tumours may be a role that reduced dimeric human galectin-1 performs in addition to lectin mediated tumourigenic roles such as T cell apoptosis and cell adhesion and migration. Additionally, the 68 kDa and 17 kDa oxidized species of oxidized human galectin-1 may enhance protection under oxidative stress via direct cell surface interaction with cancerous tumour cells.

More investigation into the structure and function of human galectin-1 within oxidizing environments is required, particularly in the context of cancer, because the oxidative stress associated with many cancers provides an opportunity to design treatment strategies that selectively target cancer cells based on their redox profile.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å</td>
<td>angstrom</td>
</tr>
<tr>
<td>Amp</td>
<td>ampicillin</td>
</tr>
<tr>
<td>ASU</td>
<td>asymmetric unit</td>
</tr>
<tr>
<td>β-ME</td>
<td>β-mercaptoethanol</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CRD</td>
<td>carbohydrate recognition domain</td>
</tr>
<tr>
<td>Cys-SOH/CSO</td>
<td>sulphenic acid</td>
</tr>
<tr>
<td>Cys-SO₂H</td>
<td>sulphinic acid</td>
</tr>
<tr>
<td>Cys-SO₃H</td>
<td>sulphonic acid</td>
</tr>
<tr>
<td>DLS</td>
<td>dynamic light scattering</td>
</tr>
<tr>
<td>DTT</td>
<td>dithiothreitol</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>FPP</td>
<td>farnesyl diphosphate</td>
</tr>
<tr>
<td>Gal</td>
<td>galactose</td>
</tr>
<tr>
<td>Glc</td>
<td>glucose</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>h-gal-1</td>
<td>hexahistidine tagged human galectin-1</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>hydrogen peroxide</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>IPTG</td>
<td>isopropyl-β-D-thiogalactopyranoside</td>
</tr>
<tr>
<td>K</td>
<td>kelvin</td>
</tr>
<tr>
<td>kDa</td>
<td>kilodalton</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LacNAc</td>
<td>N-acetyllactosamine</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani media</td>
</tr>
<tr>
<td>Man</td>
<td>mannose</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
</tbody>
</table>
µM micromolar
mM millimolar
M molar
msec millisecond
NAc N-acetyl group
ng nanogram
nm nanometre
nM nanomolar
OD optical density
PAGE polyacrylamide gel electrophoresis
PCR polymerase chain reaction
PBS phosphate buffered saline
pg picogram
PI propidium iodide
pmol picomole
PMSF phenyl methyl sulphonyl fluoride
ppm parts per million
Prx peroxiredoxin
PS phosphatidylserine
R_g radius of gyration
R_h hydrodynamic radius
ROS reactive oxygen species
rpm revolutions per minute
s second
S70 Sephacryl 100 High Resolution column
S100 Sephacryl S-100 High Resolution column
S200 Superdex 200 10/300 GL column
SD standard deviation
SDS sodium dodecyl sulphate
SEC size exclusion chromatography
STD NMR saturation transfer difference nuclear magnetic resonance
V voltage
Table of Contents

Statement of Originality ... ii
Thesis Contributions .. iii
Acknowledgements .. iv
Research Publications ..v
Abstract .. vii
List of Abbreviations .. viii
List of Figures ... xvi
List of Tables .. xix

Chapter 1 – Introduction .. 1
1.1 Overview and summary .. 1
1.2 Animal lectins ... 1
1.3 Galectins .. 5
 1.3.1 The galectin carbohydrate recognition domain ... 6
 1.3.2 A common β-galactoside ligand of galectins ... 9
 1.3.3 Galectin β-galactoside binding subsites .. 9
 1.3.4 Larger β-galactoside ligands of galectins ... 11
 1.3.5 Mammalian galectin function .. 15
1.4 The carbohydrate-binding site of the human galectin-1 CRD ... 16
1.4.1 Galectin-1 functions that are mediated by lectin activity .. 17
1.5 Galectin-1 lectin activity and tumourigenesis ... 18
 1.5.1 Glycon inhibitors of the galectin-1 carbohydrate-binding site ... 20
 1.5.2 Agycon inhibitors of the galectin-1 carbohydrate-binding site ... 20
 1.5.3 Glycopeptide inhibitors of the galectin-1 carbohydrate-binding site 21
1.6 Galectin-1 lectin-independent growth-inhibitory activity ... 22
1.7 Galectin-1’s lectin-independent interaction with H-Ras ... 23
1.8 Oxidized galectin-1 .. 24
 1.8.1 Function of oxidized galectin-1 .. 25
1.9 Aims and significance .. 26

Chapter 2 – Preparation of wild-type non-tagged recombinant human galectin-1 for
structure and function investigations ... 27
2.1 Introduction .. 27
2.2 Materials .. 30
2.3 Methods .. 31
 2.3.1 Amplification of LGALS1 from the pProEX HTb-h-gal-1 plasmid .. 31
 2.3.2 Construction of the pCR-Blunt-gal-1 plasmid ... 31
 2.3.3 Removal of LGALS1 nucleotide mutations from the pCR-Blunt-gal-1 plasmid 31
 2.3.4 Construction of the pET-3a-gal-1 plasmid ... 33
Chapter 3 – A structural and functional investigation of oxidized human galectin-155

3.1 Introduction .. 55

3.2 Methods .. 58

3.2.1 Native and SDS-PAGE gel analysis .. 58
3.2.2 Dynamic light scattering analysis .. 58
3.2.3 Production of a soluble heterogeneous sample of oxidized human galectin-1 via dialysis ... 58
3.2.4 Size exclusion chromatography analysis .. 59
3.2.5 Lactosyl Sepharose binding assay .. 59
3.2.6 Cell growth maintenance conditions for MOLT-4 cells .. 59
3.2.7 Hydrogen peroxide-induced apoptosis of MOLT-4 cells 60
3.2.8 Treatment of MOLT-4 cells with reduced and oxidized human galectin-1 60
3.2.9 Hydrogen peroxide consumption assay .. 61
3.2.10 Statistical analysis ... 61
3.2.11 Crystallisation of Peak-3/Buffer_B (17 kDa) oxidized human galectin-1 protein species .. 61

3.3 Results ... 63

3.3.1 Native PAGE analysis of oxidized human galectin-1 .. 63
3.3.2 Dynamic light scattering and SDS-PAGE analysis of oxidized human galectin-1 ... 66
3.3.3 Size exclusion chromatography characterisation of heterogeneous oxidized human galectin-1 protein samples .. 70
3.3.4 Oxidized human galectin-1 does not possess lectin activity 74
3.3.5 Assessment of oxidation-induced disulphide bond formation 76
3.3.6 Dynamic light scattering analysis of oxidized human galectin-1 77
3.3.7 Analysis of Peak-3 oxidized human galectin-1 at greater solubility 80
3.3.8 Oxidized human galectin-1 protects MOLT-4 leukemia cells from hydrogen peroxide-induced apoptosis ... 83
3.3.9 Oxidized human galectin-1 does not possess peroxiredoxin-like activity 89
Chapter 4 – Crystallisation, X-ray diffraction analysis and X-ray crystallographic structure determination of recombinant human galectin-1..................99

4.1 Introduction...99

4.2 Methods ..103

4.2.1 Crystallisation of recombinant human galectin-1 in the presence and absence of lactose ...103

4.2.2 X-ray diffraction data collected in-house ...103

4.2.3 Synchrotron X-ray diffraction data collection ...103

4.2.4 X-ray diffraction analysis, crystal structure determination and refinement104

4.3 Results ..105

4.3.1 Crystallisation of recombinant human galectin-1 in the presence of lactose and analysis of resulting crystals105

4.3.2 Complex-1: A crystal structure of human galectin-1 bound to lactose109

4.3.3 Complex-2: A crystal structure of human galectin-1 bound to lactose113

4.3.4 Crystallisation of human galectin-1 in the absence of lactose....................116

4.3.5 The crystal structure of apo human galectin-1 ...117

4.4 Discussion ..121

Chapter 5 – An investigation into the transition from a reduced form of human galectin-1 to an oxidized form...127

5.1 Introduction..127

5.2 Methods ..131

5.2.1 Structural analysis of complex-1, -2 and apo human galectin-1 crystal structures ..131

5.2.2 Dialysis oxidation of human galectin-1 in the presence of dimedone131

5.2.3 Hydrogen peroxide consumption assay ..132

5.2.4 Assessment of disulphide bond formation for human galectin-1 treated with hydrogen peroxide ...132

5.2.5 Lectin activity of human galectin-1 treated with hydrogen peroxide132

5.2.6 Statistical analysis ...133

5.3 Results ...134

5.3.1 Lactose-absent subunits exhibit un-ravelling of secondary structure134

5.3.2 Lactose-absent subunits are intrinsically flexible structures137

5.3.3 The position of residues within the lactose-absent subunits are disrupted141

5.3.4 The chemical state of cysteine residues within the lactose-absent subunits147

5.3.5 Dimedone disrupts the formation of oxidized human galectin-1150

5.3.6 Human galectin-1 consumes hydrogen peroxide155

5.4 Discussion ...159

Chapter 6 – An investigation into the farnesyl binding ability of human galectin-1164
Chapter 7 – Conclusions and Future Directions ... 183

References ... 188

Appendix ... 201

Appendix A – An alignment of galectin carbohydrate recognition domain amino acid sequences ... 201
Appendix B – Vectors .. 204
Appendix C – Sequencing results ... 207
Appendix D – Dynamic light scattering analysis of button dialysis solubility screening .. 212
Appendix E – Analysis of Peak-3/Buffer_B (17 kDa) post-24 h within a reducing environment .. 214
Appendix F – X-ray diffraction ... 215
Appendix G – Diffraction data and refinement statistics for human galectin-1 crystal structures obtained from crystals grown in the presence of farnesyl diphosphate .. 220
Appendix H – Publications .. 223
List of Figures

Figure 1.1: A schematic of the three subgroups of mammalian galectins..........................6
Figure 1.2: Superimposition of animal galectin X-ray crystal structures.........................7
Figure 1.3: LacNAc is a common natural ligand of galectins..9
Figure 1.4: The β-galactoside binding subsites of galectins..10
Figure 1.5: Galectins bind to a large repertoire of structurally diverse, complex β- galactoside structures ..15
Figure 1.6: Homodimeric human galectin-1 bound to lactose17
Figure 1.7: A glycon inhibitors of galectin-1 ..21
Figure 1.8: Putative growth-inhibitory active site located near the S2-S3 loop...............22
Figure 1.9: Putative farnesyl-binding site of human galectin-124
Figure 1.10: Position of the six cysteines within the 14.5 kDa subunit25
Figure 2.1: The nucleotide sequence of LGALS1: the human galectin-1 gene28
Figure 2.2: Stratagene QuikChange site-directed mutagenesis method33
Figure 2.3: Amplification of LGALS1 from the pProEX HTb-h-gal-1 plasmid38
Figure 2.4: Successful blunt-end ligation of LGALS1 into the pCR-Blunt vector........39
Figure 2.5: Successful generation of wild-type pCR-Blunt-gal-1 plasmid40
Figure 2.6: Possible orientation #1 of the LGALS1 PCR fragment within the pCR-Blunt vector ..41
Figure 2.7: Possible orientation #2 of the LGALS1 PCR fragment within the pCR-Blunt vector ..41
Figure 2.8: PCR screening for pET-3a-gal-1 transformans ..42
Figure 2.9: Purification of recombinant human galectin-1 using affinity chromatography.44
Figure 2.10: Purification of recombinant human galectin-1 using size exclusion chromatography ..45
Figure 2.11: Size exclusion chromatography analysis of human galectin-1 in the presence and absence of lactose ...47
Figure 2.12: SDS-PAGE analysis of human galectin-1 in the presence and absence of lactose ..48
Figure 2.13: Dynamic light scattering analysis of reduced human galectin-150
Figure 2.14: Schematic diagrams of proposed differences in protein shape and hydration between apo and lactose bound human galectin-154
Figure 3.1: Native PAGE analysis of human galectin-1 oxidized in the presence of varying concentrations of CuSO4 ...65
Figure 3.2: Dynamic light scattering analysis of human galectin-1 oxidized with 0.001 mM CuSO4 for varying periods of time68
Figure 3.3: SDS-PAGE analysis of human galectin-1 oxidized with 0.001 mM CuSO469
Figure 3.4: Elution profiles of oxidized human galectin-1 protein species from Superdex 200 and Sephacryl 100 size exclusion chromatography columns 73
Figure 3.5: The loss of lectin function for oxidized human galectin-1 is not reversed by a reducing environment ...75
Figure 3.6: Elution profiles of reduced Peak-1/Buffer_A (68 kDa) and Peak-3/Buffer_A (22 kDa) ...75
Figure 3.7: SDS-PAGE analysis of reduced and oxidized human galectin-1 under reduced and non-reducing conditions respectively ... 77
Figure 3.8: Dynamic light scattering analysis of Peak-1/Buffer_A (68 kDa) and Peak-3/Buffer_A (22 kDa) ... 78
Figure 3.9: SEC and DLS analysis of human galectin-1 oxidized with Buffer_B 81
Figure 3.10: Comparison of Peak-3/Buffer_B (17 kDa) with a \(R_b \) versus molecular weight plot for globular standard proteins ... 83
Figure 3.11: The effect of human galectin-1 on MOLT-4 cells is redox dependent 88
Figure 3.12: Oxidized human galectin-1 does not consume hydrogen peroxide 91
Figure 3.13: A-F) Irregularly shaped fibre-like structures which grew from vapour-diffusion hanging drops containing different crystallisation conditions and Peak-3/Buffer_B (17 kDa) protein .. 93
Figure 4.1: Human galectin-1 crystals grown in the presence of \(\beta \)-ME and excess lactose ... 106
Figure 4.2: Crystal packing in space group \(P2_1 \) for complex-1 .. 111
Figure 4.3: The final Ramachandran plot calculated for complex-1 by PROCHECK 112
Figure 4.4: Crystal packing in space group \(P2_1 \) for complex-2 115
Figure 4.5: The final Ramachandran plot calculated for complex-2 by PROCHECK 116
Figure 4.6: A human galectin-1 crystal grown in the presence of \(\beta \)-ME and the absence of lactose ... 117
Figure 4.7: Crystal packing in space group \(P2_1 \) for the apo structure 118
Figure 4.8: The final Ramachandran plot calculated for the apo structure by PROCHECK ... 119
Figure 4.9: Contact electrostatic potential (local) of the carbohydrate-binding site and surrounding regions for subunits of complex-1, -2 and the apo crystal structure ... 122
Figure 4.10: The atomic structure of a positively charged cavity close to the carbohydrate-binding site of human galectin-1 .. 124
Figure 4.11: GRG binding sites on human galectin-1 .. 126
Figure 5.1: Various chemical states of human galectin-1 cysteine residues 128
Figure 5.2: Treatment of CSO (-S-OH) with dimedone forms a stable thioether adduct 129
Figure 5.3: The asymmetric unit of complex-1 .. 134
Figure 5.4: The carbohydrate-binding site of lactose-bound and lactose-absent subunits within the asymmetric unit of complex-1 and -2 ... 135
Figure 5.5: A main chain B-factor plot for the residues of the 14.5 kDa subunits within complex-1, -2 and the apo human galectin-1 crystal structure 137
Figure 5.6: A surface representation of residues in the region of the carbohydrate-binding site of complex-1, -2 and the apo structure that make crystal contacts ... 140
Figure 5.7: The \(2|F_{\text{obs}}| - |F_{\text{calc}}| \) \(\alpha c \) electron density (contoured at 1.0 \(\sigma \)) associated with the residue sequence Phe46 – Asn56 within the carbohydrate-binding site of the apo subunits and the lactose-absent subunits of complex-1 and -2 143
Figure 5.8: A salt-bridge network exists between residues Arg48, Asp54, Glu71 and Arg73 within the carbohydrate-binding site of human galectin-1 145
Figure 5.9: Analysis of human galectin-1 oxidized in the presence of Buffer_A supplemented with dimedone ... 152
Figure 5.10: Analysis of human galectin-1 oxidized in the presence of Buffer_B supplemented with dimedone ... 154
Figure 5.11: Human galectin-1 consumes hydrogen peroxide ... 156
Figure 5.12: Mild concentrations of H2O2 affect the lectin activity of human galectin-1.... 158
Figure 5.13: The catalytic cycle of peroxiredoxin H2O2 scavenging activity coupled with the NADPH/reductase system ... 162
Figure 6.1: Farnesyl (1), myristate (2), farnesylthiosalicylic acid (FTS) (3) and farnesyl disphosphate (FPP) (4) ... 165
Figure 6.2: Calorimetric titration of a heterogeneous oxidized human galectin-1 sample with farnesyl disphosphate ... 166
Figure 6.3: Soaking preformed human galectin-1 crystals in drops that contain farnesyl disphosphate induces crystal cracking ... 172
Figure 6.4: The crystals grown from co-crystallisation experiments of reduced human galectin-1 with lactose and farnesyl disphosphate ... 173
Figure 6.5: Remaining difference electron density (contoured at 3.0 σ) for the refined crystal structure obtained from crystal B (the crystal depicted in Figure 6.4B) ... 175
Figure 6.6: Crystal E grown from the co-crystallisation of a higher human galectin-1/farnesyl disphosphate ratio ... 175
Figure 6.7: Co-crystallisation of reduced apo human galectin-1 with farnesyl disphosphate ... 176
Figure 6.8: STD NMR investigation of Peak-3/Buffer_B (17 kDa) interaction with farnesyl disphosphate ... 178
Figure 6.9: Co-crystallisation of Peak-3/Buffer_B (17 kDa) oxidized human galectin-1 with farnesyl disphosphate ... 180
Figure 7.1: A schematic of the postulated roles human galectin-1 has as a protector from oxidative stress within the cancerous tumour ... 187
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1:</td>
<td>Animal lectin groups</td>
</tr>
<tr>
<td>Table 1.2:</td>
<td>A section of the amino acid sequence alignment performed by Houzelstein et al. (2004) showing the region of the conserved “7-motif” for galectins-7, -10 and the C-terminal CRD of galectins-12</td>
</tr>
<tr>
<td>Table 3.1:</td>
<td>Solubility buffers</td>
</tr>
<tr>
<td>Table 4.1:</td>
<td>Crystallisation conditions (reservoir solutions), crystal dimensions and maximum observed diffraction resolution for crystals A-G</td>
</tr>
<tr>
<td>Table 4.2:</td>
<td>Diffraction data statistics for crystals E, F and G</td>
</tr>
<tr>
<td>Table 4.3:</td>
<td>A rotation-function search for the first dimer of complex-1</td>
</tr>
<tr>
<td>Table 4.4:</td>
<td>A translation function search for the second dimer of complex-1</td>
</tr>
<tr>
<td>Table 4.5:</td>
<td>Refinement statistics for complex-1</td>
</tr>
<tr>
<td>Table 4.6:</td>
<td>Ramachandran plot statistics calculated for complex-1 by PROCHECK</td>
</tr>
<tr>
<td>Table 4.7:</td>
<td>A rotation function search for the first dimer of complex-2</td>
</tr>
<tr>
<td>Table 4.8:</td>
<td>A translation function search for the second dimer of complex-2</td>
</tr>
<tr>
<td>Table 4.9:</td>
<td>Refinement statistics for complex-2</td>
</tr>
<tr>
<td>Table 4.10:</td>
<td>Ramachandran plot statistics calculated for complex-2 by PROCHECK</td>
</tr>
<tr>
<td>Table 4.11:</td>
<td>Diffraction data statistics for a crystal grown in the absence of lactose</td>
</tr>
<tr>
<td>Table 4.12:</td>
<td>A rotation function search for the first dimer of the apo human galectin crystal structure</td>
</tr>
<tr>
<td>Table 4.13:</td>
<td>Refinement statistics for apo human galectin-1 crystal structure</td>
</tr>
<tr>
<td>Table 4.14:</td>
<td>Ramachandran plot statistics calculated for the apo structure by PROCHECK</td>
</tr>
<tr>
<td>Table 5.1:</td>
<td>Inter-dimer and symmetry-related atom-to-atom crystal contacts made within complex-1, -2 and the apo human galectin-1 crystal structure</td>
</tr>
<tr>
<td>Table 5.2:</td>
<td>The R_g for the 14.5 kDa subunits within the asymmetric unit of complex-1, -2 and the apo crystal structure was calculated using the VMD (Visual Molecular Dynamics) program</td>
</tr>
<tr>
<td>Table 5.3:</td>
<td>Atom-to-atom contact distances between residues Arg48, Asp54, Glu71 and Arg73 of the salt-bridge network within the subunits of complex-1, -2 and the apo crystal structure</td>
</tr>
<tr>
<td>Table 5.4:</td>
<td>Differential patterns of cysteine redox state within the subunits of complex-1, -2 and the apo crystal structure</td>
</tr>
<tr>
<td>Table 6.1:</td>
<td>Hampton Research crystallisation conditions (reservoir solutions) for crystals F-I depicted in Figure 6.7A-D respectively</td>
</tr>
<tr>
<td>Table 6.2:</td>
<td>Hampton Research crystallisation conditions (reservoir solutions) for crystals A-C and optimized crystallisation conditions (reservoir solutions) for crystals D-F</td>
</tr>
</tbody>
</table>