Effects of Long Term Exposure on Toxicity

Vibha Verma
Msc. (Env. Sc.)

Griffith School of Engineering
Griffith University
March, 2014
ABSTRACT

In environmental investigations the effects of relatively long exposure times, often over a lifetime or decades, are of particular importance. Considering the importance of exposure time for toxicity to occur, the relationship between the lethal exposure time (LT_{50}) and lethal exposure concentration (LC_{50}) has been evaluated over relatively long exposure times using Normal Life Expectancy (NLE) as a reference point. The innovatory approach of using NLE as a reference point is important since it limits the data to the range where toxicity occurs.

A model based on this concept has been developed which has the normal life expectancy (NLE) as a fixed limiting point for a species. The model is based on the equation ($LC_{50} = a \ln(LT_{50}) + b$) where a and b are constants. It was evaluated by plotting $\ln LT_{50}$ against LC_{50} with data on organic biocides with fish and metal, metalloid and organic compounds with zooplanktons obtained from the scientific literature.

Most of the experimental data sets can be satisfactorily correlated by use of the RLE (Reduced Life Expectancy) model, but deviations occurred for some data sets. Those data sets were satisfactorily fitted by a Two Stage RLE model. This model was based on two phases: one in the peripheral system and other in the central system. Both the Single and Two Stage RLE model support the hypothesis that toxicity is time dependent and decreases in a systematic way with increasing exposure time. A Calculated NLE was derived from the plots. The Calculated NLE obtained was in good agreement with the Reported NLE obtained from literature. Estimation of toxicity at any, particularly long exposure time and concentration is possible using the model.

In conjunction with aquatic organisms, the relationship between LC_{50} and $\ln LT_{50}$ has been evaluated over relatively long exposure times with terrestrial mammal. The model was evaluated by plotting $\ln LT_{50}$ against LC_{50} using available toxicity...
data related to terrestrial mammals from the literature. The model equation is
\[\ln(LT_{50}) = a \cdot LC_{50} + b, \]
where a, b and \(a' \) are constants. The constant \(a' \) is the slope coefficient, \(b \) is related to NLE and the exponent \((\cdot) \) applied to \(LC_{50} \) controls the degree of nonlinearity. A consistent nonlinear relationship was observed with the exponent value \((\cdot) \) always < 1.

Use of NLE as a reference point provided a valuable limiting point for long exposure times beyond which no toxic effects can occur. The relationships between log octanol-water partition coefficient (Kow) and model constants a and \(a' \) were also evaluated and can be used to calculate model constants. According to this model toxicity is not dependent on body size of the organisms but principally on exposure concentration and exposure time and particularly at relatively long exposure times. The model can be used to characterise toxicity to specific mammals and then be extended to estimate toxicity to other mammals (similar type).

Though Haber’s Rule \((C.t = k) \) has been an appropriate and effective tool for evaluation of effects of exposure time on toxicity with pharmaceuticals and military gases. But in recent years there has been an increase in chemicals released to the environment. The environmental concentrations of these chemicals are usually low and the exposures times are relatively long, often a life time. According to Haber’s Rule when lethal exposure concentration \((LC_{50}) \) approximates zero, then the exposure time \((LT_{50}) \) approaches infinity. So in this situation Haber’s Rule is quite inappropriate and a new approach is needed.

The RLE model \((LC_{50} = [\ln(NLE) - \ln(LT_{50})]/d) \) which is based on a linear relationship between \(LC_{50} \) and \(\lnLT_{50} \) and uses NLE as a reference point as well as a long term data point has been proposed as an alternative to Haber’s Rule. After a direct comparison of both models it was observed that the RLE model has the benefit of using the NLE as a long term data point. According to the RLE model, unlike Haber’s Rule when \(LC_{50} \) approaches zero, then in place of being infinity the \(LT_{50} \) is limited by NLE. Though when the \(LT_{50} \) is short and the \(LC_{50} \) is high, Haber’s Rule showed consistency with the RLE model. But the difference between the two was evident in the situation when the \(LT_{50} \) is relatively long and the \(LC_{50} \) is
very low. This novel approach is a more appropriate and effective alternative to evaluate long term effects of exposure. In fact the RLE model is a marked departure from Haber’s Rule. It can be used to estimate the long term effects of exposure accurately and easily.
STATEMENT OF ORIGINALITY

“This thesis is submitted to Griffith University to fulfil the requirements of the degree of Doctor of Philosophy. I hereby declare that the work embodied in this thesis is my own original work and this work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.”

Vibha Verma

date
Table of Contents

ABSTRACT ... II
STATEMENT OF ORIGINALITY ... V
TABLE OF CONTENTS ... VI
LIST OF FIGURES ... X
LIST OF TABLES ... XIII
DEDICATION .. XV
LIST OF PUBLICATIONS ... XVI
LIST OF ACRONYMS & ABBREVIATIONS ... XVII
KEYWORDS .. XIX

CHAPTER 1 INTRODUCTION .. 1

CHAPTER 2 AIMS AND OBJECTIVES ... 5
 2.1 INTRODUCTION ... 5
 2.2 PRINCIPAL OBJECTIVES ... 5
 2.3 DETAILED OBJECTIVES .. 6

CHAPTER 3 LITERATURE REVIEW OF THE RELATIONSHIP BETWEEN EXPOSURE TIME & CORRESPONDING LETHAL CONCENTRATION 7
 3.1 INTRODUCTION ... 7
 3.2 TOXICANTS .. 8
 3.2.1 Organic Toxicants .. 8
 3.2.2 Inorganic Toxicants ... 10
 3.3 TOXICITY EVALUATIONS .. 11
 3.3.1 Background .. 11
 3.3.2 Acute (Short Term) Toxicity Evaluations ... 12
 3.3.3 Chronic (Long Term) Toxicity Evaluations ... 13
 3.3.4 Exposure Systems in Toxicity Experiments 14
 3.4 LETHAL CONCENTRATION (LC_{50}) .. 16
 3.4.1 Background ... 16
 3.4.2 Methods to Calculate Lethal Concentration 17
 3.5 INTERNAL LETHAL CONCENTRATION (ILC_{50}) .. 19
 3.5.1 Background ... 19
 3.5.2 Significance of ILC_{50} .. 19
 3.5.3 Nature of ILC_{50} ... 20
 3.6 RELATIONSHIP BETWEEN LC_{50} AND ILC_{50} 21
 3.7 LETHAL EXPOSURE TIME (LT_{50}) ... 21
 3.8 FACTORS AFFECTING TOXICITY .. 22
 3.8.1 Background ... 22
 3.8.2 Factors Affecting Aquatic Toxicity ... 22
 3.8.3 Factors Affecting Terrestrial Mammal Toxicity 24
 3.9 RELATIONSHIP OF EXPOSURE TIME PERIOD WITH TOXICITY 25
 3.9.1 Background ... 25
 3.9.2 Significance of Exposure Time .. 26
 3.9.3 Haber’s Rule: The Concept of C.t = k .. 27
3.9.4 The Reduced Life Expectancy Model33

CHAPTER 4 DEVELOPMENT OF THE THEORETICAL MODELS TO EVALUATE THE
RELATIONSHIP OF TOXICITY WITH EXPOSURE TIME38
4.1 BACKGROUND ..38
4.2 RLE MODEL BASED ON LETHAL EXPOSURE CONCENTRATION IN
WATER (LC$_{50}$) ..38
4.3 THE TWO STAGE RLE MODEL ...41
4.4 NONLINEAR RLE MODEL ...44
4.5 TO COMPARE THE RLE MODEL WITH HABER’S RULE47
 4.5.1 The RLE Model in a Form Comparable to Haber’s Rule47
 4.5.2 Haber’s Rule ..47
 4.5.3 Schematic Comparison of the RLE Model and Haber’s
 Rule ..48

CHAPTER 5 RESEARCH METHODOLOGY ...50
5.1 BACKGROUND ..50
5.2 ORGANISMS AND TOXICANTS USED FOR MODEL EVALUATION ..50
 5.2.1 Fish and Corresponding Toxicants51
 5.2.2 Zooplanktons and Corresponding Toxicants51
 5.2.3 Mammals and Corresponding Toxicants52
5.3 DATA COLLECTION ...53
 5.3.1 Fish Data ...53
 5.3.2 Zooplankton Data ...53
 5.3.3 Terrestrial Mammal Data ..54
5.4 REGRESSION ANALYSIS OF THE DATA54
 5.4.1 RLE Model ...54
 5.4.2 Two-Stage RLE Model ..55
 5.4.3 Nonlinear RLE Model ...56
 5.4.4 To Compare the RLE Model with Haber’s Rule56

CHAPTER 6 REDUCED LIFE EXPECTANCY MODEL FOR EFFECTS OF LONG TERM
EXPOSURE ON LETHAL TOXICITY WITH FISH58
6.1 BACKGROUND ..58
6.2 MODEL EVALUATION ..59
 6.2.1 Relationship between Exposure Time and Toxicity59
 6.2.2 Use of the Reference Point NLE as a Limiting Point59
6.3 COMPARISON OF THE REPORTED NLE WITH CALCULATED NLE ..60
6.4 APPLICATION OF THE RLE MODEL ..61
 6.4.1 Toxicity at Longer Exposures Times61
 6.4.2 Estimation of Normal Life Expectancy (NLE)62
 6.5 CONCLUSIONS ...62

CHAPTER 7 EVALUATION OF EFFECTS OF LONG TERM EXPOSURE ON AQUATIC
TOXICITY WITH ZOOPLANKTONS ...71
7.1 BACKGROUND ..71
7.2 RELATIONSHIP OF EXPOSURE TIME TO TOXICITY72
7.3 NONLINEAR RELATIONSHIP: APPLICATION OF THE TWO STAGE MODEL 73
7.4 COMPARISON OF THE REPORTED NLE WITH CALCULATED NLE74
7.5 CONCLUSIONS ...76
CHAPTER 8 EVALUATION OF EFFECTS OF LONG TERM EXPOSURE ON LETHAL TOXICITY WITH MAMMALS .. 85
 8.1 BACKGROUND .. 85
 8.2 GENERAL NATURE OF THE RELATIONSHIP BETWEEN TOXICITY AND EXPOSURE TIME .. 86
 8.3 RELATIONSHIP OF TOXICITY WITH BODY-SIZE .. 86
 8.4 APPLICATION OF A SINGLE EQUATION FOR EACH TOXICANT WITH ALL GROUPS OF MAMMALS ... 87
 8.5 RELATIONSHIP OF THE SLOPE COEFFICIENT (\(a'\)) AND EXPONENT (\(v\)) WITH THE OCTANOL – WATER PARTITION COEFFICIENT (\(\log K_{ow}\)) OF TOXICANTS .. 88
 8.6 CONCLUSIONS ... 89

CHAPTER 9 A COMPARISON OF THE REDUCED LIFE EXPECTANCY (RLE) MODEL WITH HABER’S RULE .. 99
 9.1 BACKGROUND .. 99
 9.2 MODEL EVALUATION ... 100
 9.2.1 Concept of the NLE as Reference Point .. 100
 9.2.2 Relationship between the Exposure Time and Lethal Exposure Concentration ... 100
 9.3 ESTIMATION OF TOXICITY: THE RLE MODEL VS. HABER’S RULE 101
 9.4 CONCLUSIONS ... 102

CHAPTER 10 CONCLUSIONS ... 109
 10.1 OVERVIEW .. 109
 10.2 EVALUATION OF RELATIONSHIP BETWEEN EXPOSURE TIME & LETHAL TOXICITY USING THE RLE MODEL .. 109
 10.3 ESTIMATION OF TOXICITY OF RELATIVELY LONG EXPOSURE TIME. 110
 10.4 THE RLE MODEL: AN ALTERNATIVE TO HABER’S RULE 111

REFERENCES .. 111

APPENDICES

APPENDIX A: TOXICITY DATA ON EXPOSURE TIME AND CONCENTRATION FOR FISH WITH ORGANIC COMPOUNDS (USED IN CHAPTER 6) 145

APPENDIX B: PLOTS OF \(LT_{50}\) VERSUS \(LC_{50}\) FOR FISH SPECIES WITH ORGANIC COMPOUNDS (RELATED TO CHAPTER 6) .. 153

APPENDIX C: TOXICITY DATA ON EXPOSURE TIME AND CONCENTRATION FOR ZOOPLANKTONS WITH METALS AND ORGANIC COMPOUNDS (USED IN CHAPTER 7). 158

APPENDIX D: PLOTS OF \(LT_{50}\) VERSUS \(LC_{50}\) FOR ZOOPLANKTONS WITH METALS AND ORGANIC COMPOUNDS (RELATED TO CHAPTER 7) .. 162

APPENDIX E: TOXICITY DATA ON EXPOSURE TIME AND CONCENTRATION FOR MAMMALS WITH ORGANIC AND INORGANIC COMPOUNDS (USED IN CHAPTER 8). 165
APPENDIX F: PLOTS OF InLT$_{50}$ VERSUS LC$_{50}$ FOR MAMMALS WITH ORGANIC AND INORGANIC COMPOUNDS (RELATED TO CHAPTER 8) .. 168

APPENDIX G: TOXICITY DATA ON EXPOSURE TIME AND CONCENTRATION FOR RATS WITH ORGANIC COMPOUNDS (USED IN CHAPTER 9). ... 175

APPENDIX H: PLOTS OF 1/LC$_{50}$ VERSUS LT$_{50}$ FOR THOSE TOXICANTS WHERE DATA SETS ARE AVAILABLE FOR ALL MAMMALS USED (RAT, MOUSE, DOG AND MONKEY (RELATED TO CHAPTER 9). .. 176
LIST OF FIGURES

Figure 3.1: A conceptual diagram showing median lethal concentration or dose (logLC$_{50}$) ... 17

Figure 4.1: A diagrammatic illustration of the movement of toxicant in the organisms. ... 42

Figure 4.2: Schematic diagram showing conceptual relationship between the LC$_{50}$ and natural logarithm of the exposure time for a Single Stage and a Two Stage Reduced Life Expectancy Model with Central and Peripheral System. ... 42

Figure 4.3: Schematic diagram showing conceptual relationship between lethal exposure concentration (LC$_{50}$) and natural logarithm of exposure time (lnLT$_{50}$) for the original RLE model and the nonlinear RLE Model. .. 45

Figure 4.4: Schematic diagram of the Model showing conceptual relationship between lethal exposure concentration (LC$_{50}$) and natural logarithm of exposure time (lnLT$_{50}$) for a Nonlinear Reduced Life Expectancy Model when value of v is <1, $=1$ and >1 ... 46

Figure 4.5: Schematic diagram showing a comparison of the long term effects of exposure time according to the RLE model and Haber’s rule. 49

Figure 6.1: Examples of plots of LC$_{50}$ against lnLT$_{50}$ with the linear regression line and reported NLE on the x-axis (Table 6.1). 68

Figure 6.2: Example of plots using the RLE model for estimation of long term toxicity ... 69

Figure 6.3: Plot of the Calculated NLE with the Reported NLE with the linear regression line. ... 70

Figure 7.1: Plots of LC$_{50}$ versus lnLT$_{50}$ for zooplanktons with linear regression lines for metalloid (a) and metals (b, c, d, e) data sets. NLE is indicated, where one cross on the x-axis represents average of reported NLE values when only one species of zooplankton. ... 82

Figure 7.2: Plots of LC$_{50}$ versus lnLT$_{50}$ for zooplanktons with linear regression lines with pesticides with normal life expectancy shown. One cross on x-axis represents average reported NLE where only one species of zooplanktons is involved. When more than one species are involved two crosses represent range of NLE between lowest and highest average NLE ... 83
Figure 7.3: Plots of LC_{50} versus $lnLT_{50}$ for zooplanktons with linear regression lines using the two stage RLE model. One cross on the x-axis represents average reported NLE where only one species of zooplankton is involved. When more than one species are involved two crosses represent range of NLE between lowest and highest average NLE……84

Figure 8.1: Plots of LC_{50} versus $lnLT_{50}$ with experimental data for mammal groups against organic toxicant chlorine pentafluoride with lines obtained from regression analysis (see Table 8.2)…………………………………………………………95

Figure 8.2: Plots of LC_{50} versus $lnLT_{50}$ with combined experimental data for all mammal groups for each toxicant with lines obtained from regression analysis (see Table 8.2). ………………………………………………………………………96

Figure 8.3: Illustration of the processes involved in partitioning of toxicant molecules inhaled, between the external air phase and the receptor…..97

Figure 8.4: Plot of exponent (α) obtained from regression analysis of data (LC_{50} against $lnLT_{50}$) (see Table 2) versus log Kow of compounds for all mammal groups with organic compounds (see Table 8.1)………………98

Figure 9.1: Plots of combined experimental data sets for toxicity of HpCDD with rats showing its relationship with Haber’s rule and the RLE model at relatively longer exposure time…………………………………103

Figure 9.2: Comparison of plots of ingestion experimental data sets for toxicity of TCDD with rats showing the relationship between Haber’s rule and the RLE model. ………………………………………………………………………103

Figure 9.3: Comparison of plots of inhalation experimental data sets for toxicity of MMH, NF and CPF with rats showing the relationship between Haber’s rule and the RLE model. ………………………………………………………………………104

LIST OF FIGURES IN APPENDICES

Figure B.1: Plots of LC_{50} versus $lnLT_{50}$ for fish with linear regression lines……157

Figure D.1: Plots of LC_{50} versus $lnLT_{50}$ for zooplanktons with linear regression lines with metals and metalloid. *S. major and A. salinus* lifespan is not available in literature…………………………………………………………162

Figure D.2: Plots of LC_{50} versus $lnLT_{50}$ for zooplanktons with linear regression lines with pesticides. ………………………………………………………………………164

Figure F.1: Plots of $lnLT_{50}$ versus LC_{50} for mice with nonlinear regression lines for organic (sarin, monomethylhydrazine, halothane, toluene, 1, 1, 1,-TCE) and inorganic (chlorine pentafluoride, nitrogen trifluoride) compounds. ………………………………………………………………………168
Figure F.2: Plots of $\ln LT_{50}$ versus LC_{50} for rats with nonlinear regression lines for organic (sarin, cclosarin, VX vapor, monomethylhydrazine, halothane, toluene, 1, 1, 1,-TCE) and inorganic (chlorine pentafluoride, nitrogen trifluoride) compounds using inhalation exposure data.

Figure F.3: Plots of $\ln LT_{50}$ versus LC_{50} for monkeys with nonlinear regression lines for organic (monomethylhydrazine,) and inorganic (chlorine pentafluoride, nitrogen trifluoride) compounds using inhalation exposure data.

Figure F.4: Plots of $\ln LT_{50}$ versus LC_{50} for dogs with nonlinear regression lines for organic (dimethylhydrazine, monomethylhydrazine,) and inorganic (chlorine pentafluoride, nitrogen trifluoride) compounds using inhalation exposure data.

Figure F.5: Plots of $\ln LT_{50}$ versus LC_{50} for G. minipigs with nonlinear regression lines for organic compound (VX Vapor) using inhalation exposure data.

Figure H.1: Comparison of plots of inhalation experimental data sets for toxicity of Monomethyl hydrazine, Nitrogen trifluoride and Chlorine pentafluoride with mice showing the relationship between Haber’s rule and the RLE model.

Figure H.2: Comparison of plots of inhalation experimental data sets for toxicity of Monomethyl hydrazine, Nitrogen trifluoride and Chlorine pentafluoride with mice showing the relationship between Haber’s rule and the RLE model.
LIST OF TABLES

Table 6.1: Regression analysis of relationship between lnLT_{50} and LC_{50}*.64

Table 7.1: Regression analysis of zooplanktons toxicity data from the literature for metals, metalloid and pesticides using the Single Stage RLE model* ...78

Table 7.2: Regression analysis of zooplankton toxicity data with a Two Stage relationship* ...81

Table 8.1: The octanol-water partition coefficient (log Kow) values of toxicants used in this study. ...91

Table 8.2: Regression analysis of relationships between lnLT_{50} and LC_{50}*............92

Table 9.1: Haber’s Rule and variants ..106

Table 9.2: Regression analysis of relationships between LT_{50} and 1/LC_{50} using Haber’s Rule and the RLE model* ..107

LIST OF TABLES IN APPENDICES

Table A.1: The toxicity data based on exposure time and concentration, obtained from the scientific literature are listed below for the fish species exposed to organic compounds. ...145

Table C.1: The toxicity data based on exposure time and concentration, obtained from the scientific literature are listed below for all zooplanktons exposed to metals and metalloid with sources of data.158

Table C.2: The toxicity data based on exposure time and concentration, obtained from the scientific literature are listed for all Zooplanktons exposed to insecticides with sources of data. ..159

Table E.1: The inhalation toxicity data based on exposure time and concentration, obtained from the scientific literature are listed below for all mammals exposed organic compounds..165

Table E.2: The inhalation toxicity data based on exposure time and concentration, obtained from the scientific literature are listed for all mammals exposed to inorganic compounds. ..167

Table G.1: The ingestion toxicity data based on exposure time and concentration, obtained from the scientific literature are listed below for the rats exposed to HpCDD and TCDD.................................175
ACKNOWLEDGEMENT

No words of gratitude are enough to thank my supervisors Emeritus Professor Des W. Connell and Dr Qiming J. Yu for their untiring support, invaluable guidance and motivation during last five years. I am particularly thankful of their constructive criticism, timely feedback and insightful discussions about my research ideas, paper and thesis draft which made this thesis, see the light of day.

Also I like to thank all academic, administrative and technical staff of the School of Engineering for their support and cooperation.

I especially thank my soul-mate and husband, Brijesh, who has been a great support and loved me unconditionally through highs and lows of past several years. Words are not enough to convey how much I love him. I thank my son Richal and daughter Charu for their love and support when I needed. I love them so much and I would not have made this for without their support.

My special thanks to my mum, dad and sister for their unconditional love and care they provided. My sister has been my best friend all my life. I love her from bottom of my heart and thank her for all her advice and support. I thank my beloved brothers, who have both passed on, I miss them a lot, for their love, care and support while growing up.
DEDICATION

To my parents.
LIST OF PUBLICATIONS

REFEREED JOURNAL PUBLICATION

CONFERENCE PRESENTATION

PUBLICATION SUBMITTED TO TOXICOLOGY REPORTS

1. Verma, V., Yu, Q. J., Connell, D.W., A comparison of the Reduced Life Expectancy (RLE) model with Haber’s Rule to describe the effects of exposure time on toxicity.
LIST OF ACRONYMS & ABBREVIATIONS

a Slope
a´ Slope Coefficient
As Arsenic
ATSDR Agency for Toxic Substances Data Registry
b Intercept Related to NLE
C Exposure Concentration
C_{\frac{1}{2}} Exposure Concentration
C_{B} Toxicant Concentration in the Organism Body
C_{w} Toxicant Concentration in the Water
C_{o} Toxicant Concentration below which no toxic effects are observed
CDCP Centre for Disease Control and Prevention
ChEs Cholinesterase
CPF Chlorine Pentafluoride
d Empirical Constant
d´ Empirical Constant
EPA Environmental Protection Agency
FEPA Food and Environmental Protection Act
GA Tabun
GB Sarine
GD Soman
GF Cyclosaine
gm/L Gram per Litre
HSDB Hazardous Substances Database
ILC_{50} Internal Lethal Concentration
ILL Incipient Lethal Level
IMI Imidacloprid
K_{B} Bioconcentration Factor
K_{R} Constant
K_{ow} Octanial Water Partitioning Coefficient
LC_{50} Lethal Exposure Concentration
ln Natural logarithm
log logarithm on Base 10
LT₅₀ Lethal Exposure Time
mg/L Milligram per Litre
MMH Monomethyl hydrazine
MSA Molecular Surface Area
NCEH National Centre for Environmental Health
NF Nitrogen Trifluoride
NLE Normal Life Expectancy
NOEL No Observed Effect Level
NOAEL No Observed Adverse Effect Level
NRC National Research Council
OEHHA Office of Environmental Health Hazard Assessment
OP Organophosphorus
PNS Peripheral Nervous System
POPs Persistent Organic Pollutants
ppb Parts per billion
ppm Parts per million
R² Regression Coefficient
RLE Reduced Life Expectancy
T Exposure Time
TCE Trichloroethane
TRVs Toxicity Reference Values
t₀ Exposure Time below which No Toxic Effects are Observed
UDMH Unsymmetrical dimethyl hydrazine
µg/L Microgram per Litre
Exponent
Yₗ Lipid Concentration
KEYWORDS

Alternative to Haber’s Rule
Aquatic Toxicity
Calculated NLE
Effects of Exposure Time
Estimation of Toxicity
External Lethal Concentration
Haber’s Rule
Inhalation Exposure
Intermediate Phase
Internal Lethal Concentration
Lethal Exposure Time
Lethal Exposure Concentration
Lethal Toxicity
Linear RLE Model
Long Term Effects of Exposure
Long Term Exposure
Long Term Toxicity
Nonlinear RLE Model
Normal Life Expectancy
Reduced Life Expectancy
Reduced Life Expectancy Model
Reduction in Life Expectancy
Reported NLE
Single Stage RLE Model
Terrestrial Mammal Toxicity
Two Stage RLE Model