The Anti-inflammatory Effect of Macrolide Antibiotics in Chronic Rhinosinusitis

by

Ben Wallwork MB.BS (Hons)

School of Biomolecular and Biomedical Science
Faculty of Science
Griffith University
Queensland

A Thesis Submitted in Fulfillment for the Requirements for the Degree of Doctor of Philosophy

December 2005
ABSTRACT

Chronic rhinosinusitis is a common disorder of chronic inflammation of the upper respiratory tract. It is associated with significant symptoms and impairment of the quality of life of sufferers. Despite recent advances in the medical and surgical management of chronic rhinosinusitis, there remains a population of patients who fail to obtain relief from their symptoms.

Chronic inflammation of the mucosa of the nasal cavity and paranasal sinuses is one of the hallmarks of chronic rhinosinusitis. This inflammation is demonstrated by an increased number of chronic inflammatory cells, elevated levels of pro-inflammatory cytokines, increased expression of adhesion molecules and metaplastic changes in the epithelium. The current medical treatments for chronic sinusitis aim to reduce this inflammation and consequently improve symptoms.

In recent years, evidence has emerged that macrolide antibiotics have an anti-inflammatory effect that is separate from their anti-bacterial effect. This effect was first described in the treatment of diffuse panbronchiolitis, a disorder of chronic inflammation of the lower respiratory tract. Following the success of macrolides in treating this condition it was trialed in chronic rhinosinusitis. Several open-label trials have subsequently demonstrated a beneficial effect.

Laboratory studies have investigated the mechanism of the anti-inflammatory effect of macrolides. These have shown that macrolides effect cytokine production, inflammatory cell apoptosis, expression of adhesion molecules, neutrophil oxidative burst, bacterial virulence and mucociliary function.

In this thesis we report a series of experiments designed to further investigate the mechanism of action and clinical effect of macrolides. In vitro studies using whole sections of chronic rhinosinusitis mucosa cultured for 24 hours in macrolide, prednisolone or control showed that macrolide and prednisolone produced significant
reductions in the production of interleukin-5, interleukin-8 and granulocyte-macrophage colony stimulating factor. The same cultured specimens also showed a reduction in expression of transforming growth factor-β. No reduction was seen in the expression of the key pro-inflammatory nuclear transcription factor Nuclear factor-κB.

In our in vivo experiments, biopsies were taken from chronic rhinosinusitis patients who had received a 3-month course of macrolide. These biopsies showed a reduction in the number of neutrophils present following treatment. There was no reduction in the number of other inflammatory cells or in the expression of TGF-β and NK-κB.

We have performed the first ever double-blinded, randomized, placebo-controlled trial of macrolide in the treatment of chronic rhinosinusitis. Patients receiving macrolide showed significant improvements in saccharine transit time, nasal endoscopic scoring and symptom scores following a 12 week course. Patients with low levels of serum immunoglobulin E showed significantly improved outcomes compared to those with high levels. Interleukin-8 levels in nasal lavage fluid were significantly reduced in the patients with low levels of IgE following macrolide treatment. No improvements in any of the objective or subjective outcome measures were seen in the placebo-treated patients.

We have performed a series of experiments investigating the anti-inflammatory effect of macrolide antibiotics from ‘the bench to the bedside’. These experiments have provided insight into the mechanism of action of macrolides in the laboratory setting and evidence of a beneficial effect in the treatment of chronic rhinosinusitis patients.
STATEMENT OF ORIGINALITY

The work described in this thesis was carried out in the School of Biomolecular and Biomedical Science, in the Faculty of Science at Griffith University. It was performed under the supervision of Professor Alan Mackay-Sim, Professor William Coman and Associate Professor Anders Cervin. This work has not been submitted previously for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Ben Wallwork
PUBLICATIONS ARISING FROM THIS THESIS

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisors for the encouragement, advice and support that they have provided me with throughout this research project. Professor Alan Mackay-Sim, my principal supervisor, has been an invaluable source of assistance. In particular he has provided me with much needed instruction in scientific technique and has demonstrated a tremendous ability to refine and clarify my ideas and writing. Associate Professor Anders Cervin provided the original concept and inspiration for this research and I thank him for his assistance and support from Sweden. Professor William Coman initially encouraged me to become involved in research and I thank him for his endless enthusiasm and encouragement.

I also would like to thank my friends and colleagues from the School of Biomedical and Biomolecular Science at Griffith University. In particular, Associate Professor Lennart Greiff and Dr Francois Feron always made themselves available to provide me with advice and support.

To my family and friends, I would like to say thank you for your encouragement and assistance and to Katrina, no thank you can repay you for all of your patience, company and kindness.
TABLE OF CONTENTS

1 INTRODUCTION ..1
 1.1 CLINICAL RATIONALE ...2
 1.2 NASAL CAVITY AND PARANASAL SINUS ANATOMY3
 1.2.1 Gross Anatomy ..3
 1.2.2 Histology ...4
 1.2.3 Nasal Mucous and Mucociliary Transport ...5
 1.3 CHRONIC SINUSITIS ...6
 1.3.1 Epidemiology ..7
 1.3.2 Clinical Features ...7
 1.3.3 Pathophysiology ..8
 Ostiomeatal Complex ...9
 Microbiological Factors ..10
 Immunodeficiency ...12
 Allergy ...12
 1.3.4 Inflammation and Sinusitis ..13
 Inflammatory Cells ...13
 Cytokines ..15
 Adhesion Molecules ..17
 Nuclear factor-kappa B ...18
 1.3.5 Treatment of Chronic Sinusitis ...19
 Medical Management ..19
 Antibiotics ...20
 Corticosteroids ..20
 Non-pharmacologic Treatments ...22
 Surgical Treatment ...22
 1.4 MACROLIDE ANTIBIOTICS ..23
 1.4.1 Antimicrobial Activity ...24
 1.4.2 Anti-inflamatory Activity ...25
 Clinical Studies ..25
 Mechanisms of Action ...27
 1.4.3 Effects on Mucociliary Clearance ..30
 1.5 HYPOTHESIS and AIMS ...32
2 THE ANTI-INFLAMMATORY EFFECT OF MACROLIDE ANTIBIOTICS IN VITRO

2.1 INTRODUCTION

2.2 METHODS

2.2.1 Subjects

2.2.2 Specimen collection

2.2.3 Drug preparation

2.2.4 Specimen preparation and culture

2.2.5 Bradford protein estimation

2.2.6 Cytokine ELISA

2.2.7 Immunohistochemistry

 TGF-β technique

 NF-κB technique

 Negative control

 Quantification

2.2.8 Statistical analysis

2.3 RESULTS

2.3.1 Cytokine ELISA

 IL-5 ELISA

 IL-8 ELISA

 GM-CSF ELISA

Comparing clarithromycin and prednisolone

2.3.2 In vitro specimen immunohistochemistry

 NF-κB

 TGF-β

2.4 DISCUSSION

3 THE ANTI-INFLAMMATORY EFFECT OF MACROLIDE ANTIBIOTICS IN VIVO

3.1 INTRODUCTION

3.2 MATERIALS
3.3 METHODS..60
 3.3.1 In vivo subjects..60
 3.3.2 Inflammatory cell immunohistochemical staining.................................61
 3.3.3 TGF-β staining...63
 3.3.4 NF-κB staining...64
 3.3.5 Neutrophil staining...65
 3.3.6 Negative controls...66
 3.3.7 Quantification...66
 3.3.8 Statistical analysis...67
3.4 RESULTS..67
 3.4.1 Inflammatory cell populations...67
 3.4.2 TGF-β..71
 3.4.3 NF-κB..72
3.5 DISCUSSION...73

4 A DOUBLE-BLINDED, RANDOMISED, PLACEBO-CONTROLLED TRIAL OF LONG-TERM, LOW-DOSE MACROLIDE IN THE TREATMENT OF CHRONIC RHINOSINUSITIS..75
4.1 INTRODUCTION...76
4.2 METHODS..78
 4.2.1 Subjects...78
 4.2.2 Study design..78
 4.2.3 Microbiology and blood testing...79
 4.2.4 Subjective outcome measures...80
 4.2.5 Objective outcome measures...81
 4.2.6 Statistical methods...83
4.3 RESULTS..84
 4.3.1 Subjects...84
 4.3.2 Roxithromycin vs placebo...85
 Saccharine transit time...86
 Peak nasal inspiratory flow..87
Nasal endoscopic scoring..88
Olfactory function score..89
Sino-nasal outcome test-20 score.................................90
Final response scale..92
Interleukin-8 lavage..92
α2-macroglobulin lavage...93
Fucose lavage...94
4.3.3 High IgE vs low IgE patients.................................97
Saccharine transit time...99
Peak nasal inspiratory flow.......................................100
Nasal endoscopic scoring..101
Olfactory function scoring.......................................102
Sino-nasal outcome test-20 scoring............................103
Interleukin-8 lavage..105
α2-macroglobulin lavage...106
Fucose lavage..106
Final response scale...106

4.4 DISCUSSION...107

5 DISCUSSION..109
5.1 MACROLIDES AND CYTOKINES.................................111
5.2 MACROLIDE EFFECT ON INFLAMMATORY CELLS........116
5.3 CLINICAL TRIAL...121
5.4 FUTURE DIRECTIONS..126
5.5 CONCLUSION..127

BIBLIOGRAPHY..128
APPENDIX A - MATERIALS...135

ABBREVIATIONS
a2-mac α2-macroglobulin
CRS Chronic rhinosinusitis
DPB Diffuse panbronchiolitis
ECP Eosinophilic cationic protein
ELISA Enzyme-linked immunosorbent assay
EMSA Electrophoretic mobility shift assay
FESS Functional endoscopic sinus surgery
GM-CSF Granulocyte-macrophage colony stimulating factor
ICAM-1 Intercellular adhesion molecule-1
IFN Interferon
Ig Immunoglobulin
IκB Inhibitory protein-kappa B
IL Interleukin
MBP Major basic protein
mRNA Messenger RNA
NF-κB Nuclear factor-kappa B
PBS Phosphate-buffered saline
PNIF Peak nasal inspiratory flow
RCT Randomised controlled trial
SEM Standard error of the mean
SNOT-20 Sinonasal outcome test-20
STT Saccharine transit time
TBS Tris-buffered saline
TGF-β Transforming growth factor-β
TNF-α Tumour necrosis factor-α
VCAM-1 Vascular cell adhesion molecule-1

INDEX OF FIGURES
Figure 1.1 Schematic diagram of the lateral nasal wall
Figure 1.2 The sinusitis cycle
Figure 1.3 The structure of erythromycin
Figure 2.1 Layout of tissue culture wells
Figure 2.2 IL-5 production with clarithromycin and prednisolone compared to control
Figure 2.3 IL-8 production with clarithromycin and prednisolone compared to control
Figure 2.4 GM-CSF production with clarithromycin and prednisolone compared to control
Figure 2.5 Expression of NF-κB in mucosal specimens cultured with clarithromycin or prednisolone compared to control
Figure 2.6 Expression of TGF-β in mucosal specimens cultured with clarithromycin or prednisolone compared to control
Figure 3.1 Section of nasal mucosa stained for CD3 and CD68
Figure 3.2 Section of nasal mucosa stained for CD8
Figure 3.3 Section of nasal mucosa stained as a negative control
Figure 3.4 Section of nasal mucosa stained with TGF-β
Figure 3.5 Section of nasal mucosa stained as a negative control
Figure 3.6 Section of nasal mucosa stained with NF-κB
Figure 3.7 Section of nasal mucosa stained as a negative control
Figure 3.8 Expression of CD3+ve T-lymphocytes in pre- and post-treatment biopsies
Figure 3.9 Expression of CD8+ve T-lymphocytes in pre- and post-treatment biopsies
Figure 3.10 Expression of CD68+ve macrophages in pre- and post-treatment biopsies
Figure 3.11 Number of neutrophils in pre- and post-treatment biopsies
Figure 3.12 Expression of TGF-β in pre- and post-treatment biopsies
Figure 3.13 Expression of NF-κB in pre- and post-treatment biopsies

Figure 4.1 Levels of evidence

Figure 4.2 Design of the clinical trial

Figure 4.3 Timing of outcome measures during clinical trial

Figure 4.4 Saccharine transit time pre- and post-treatment with roxithromycin

Figure 4.5 Saccharine transit time pre- and post-treatment with placebo

Figure 4.6 PNIF pre- and post-treatment with roxithromycin

Figure 4.7 PNIF pre- and post-treatment with placebo

Figure 4.8 Nasal endoscopic scoring pre- and post-treatment with roxithromycin

Figure 4.9 Nasal endoscopic scoring pre- and post-treatment with placebo

Figure 4.10 Olfactory function score pre- and post-treatment with roxithromycin

Figure 4.11 Olfactory function score pre- and post-treatment with placebo

Figure 4.12 SNOT-20 scoring pre- and post-treatment with roxithromycin

Figure 4.13 SNOT-20 scoring pre- and post-treatment with placebo

Figure 4.14 SNOT-20 scoring pre- and 3 months post-treatment with roxithromycin

Figure 4.15 Final response scale in the placebo and roxithromycin groups

Figure 4.16 IL-8 levels in nasal lavage pre- and post-treatment with roxithromycin

Figure 4.17 IL-8 levels in nasal lavage pre- and post-treatment with placebo

Figure 4.18 α2-macroglobulin pre- and post-treatment with roxithromycin

Figure 4.19 α2-macroglobulin pre- and post-treatment with placebo

Figure 4.20 Fucose levels in nasal lavage pre- and post-treatment with roxithromycin

Figure 4.21 Fucose levels in nasal lavage pre- and post-treatment with placebo

Figure 4.22 Saccharine transit time pre- and post-treatment in low-IgE patients

Figure 4.23 Saccharine transit time pre- and post-treatment in high IgE patients

Figure 4.24 PNIF pre- and post-treatment in low IgE patients
Figure 4.25 PNIF pre- and post-treatment in high IgE patients 100
Figure 4.26 Nasal endoscopic scoring in low IgE patients 101
Figure 4.27 Nasal endoscopic scoring in high IgE patients 101
Figure 4.28 Olfactory function scores in patients with low levels of IgE 102
Figure 4.29 Olfactory function scores in patients with high levels of IgE 102
Figure 4.30 SNOT-20 scores in patients with low levels of IgE 103
Figure 4.31 SNOT-20 scores in patients with high levels of IgE 103
Figure 4.32 SNOT-20 scores in low IgE patients 3 months following treatment 104
Figure 4.33 SNOT-20 scores in high IgE patients 3 months following treatment 104
Figure 4.34 Nasal lavage levels of IL-8 in low IgE patients 105
Figure 4.35 Nasal lavage levels of IL-8 in high IgE patients 105
Figure 4.36 Final response scale in patients with low compared to high IgE 106
INDEX OF TABLES

Table 1.1 Composition of nasal mucous 5
Table 1.2 Targets of macrolide anti-inflammatory activity 31
Table 2.1 Individual data for the in vitro subjects 38
Table 2.2 Antibodies used during immunohistochemical staining 44
Table 2.3 Effect of clarithromycin on IL-5 production 47
 Table 2.4 Effect of prednisolone on IL-5 production 48
Table 2.5 Effect of clarithromycin on IL-8 production 49
 Table 2.6 Effect of prednisolone on IL-8 production 50
Table 2.7 Effect of clarithromycin on GM-CSF production 51
Table 2.8 Effect of prednisolone on GM-CSF production 52
Table 2.9 Effect of prednisolone and clarithromycin on NF-κB expression 54
Table 2.10 Effect of prednisolone and clarithromycin on TGF-β expression 56
Table 3.1 Individual data for in the vivo subjects 61
Table 3.2 Antibody dilutions used for immunohistochemical staining 66
Table 3.3 Expression of CD3+ve cells pre- and post-treatment 68
Table 3.4 Expression of CD8+ve cells pre- and post-treatment 68
Table 3.5 Expression of CD68+ve cells pre- and post-treatment 69
Table 3.6 Number of neutrophils in pre- and post-treatment biopsies 70
Table 3.7 Expression of TGF-β in pre- and post-treatment biopsies 71
Table 3.8 Expression of NF-κB in pre- and post-treatment biopsies 72
Table 4.1 Baseline data for subjects enrolled in the clinical trial 85
Table 4.2 Pre- vs post-treatment outcome measures in roxithromycin-treated patients 96
Table 4.3 Pre- vs post-treatment outcome measures in low vs high IgE patients