Morphological and mechanical properties of spastic muscle in children and young adults with spastic cerebral palsy

Lee Barber

Bachelor of Applied Science (Human Movement Studies)

Post Graduate Honours (Exercise Physiology)

Master of Physiotherapy

School of Physiotherapy and Exercise Science

Griffith Health | Griffith University

Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy

September 2011
Morphological and mechanical properties of spastic muscle in children and young adults with spastic cerebral palsy
Abstract

Individuals with spastic cerebral palsy (CP) commonly experience muscle weakness, reduced range of motion, and increased stiffness of affected joints, which together contribute to reduced functional capacity. There is increasing awareness that muscular, in addition to neural factors, contribute to these deficits. The purposes of this thesis were to (1) develop and validate new ultrasound-based methods for assessing morphological properties of the human medial gastrocnemius (MG) muscle in vivo, and (2) to investigate the morphological and passive and active mechanical properties of the MG muscle in children and young adults with spastic CP.

Validation of new methods for assessing muscle morphological properties in vivo. A freehand three-dimensional ultrasound (3DUS) approach for assessing MG muscle volume and length was developed and validated against equivalent measurements made using magnetic resonance imaging (MRI). Compared to MRI, the freehand 3DUS approach overestimated muscle volume by 1.1% and underestimated muscle belly length by 1.3%. The 3DUS approach was also found to be highly reliable. A clinical method for measurement of MG muscle and tendon length was also developed and shown to have high accuracy and reliability compared to freehand 3DUS (Appendix C).

MG muscle physiological cross-sectional area (PCSA) in spastic CP. Compared to typically developed age-matched peers, PCSA of the MG muscle was reduced by 22% in young children aged 2-5 years, and by 37% in young adults aged 15-21 years. Reductions in MG muscle PCSA in the CP groups were primarily explained by a lack of volumetric muscle growth, and contribute to the muscle weakness observed in spastic CP.

Passive and active MG mechanical properties in young adults with CP assessed using dynamometry. Passive ankle stiffness was 51% higher and passive MG fascicle strain was 47% lower in the spastic group CP compared to typically developed controls. These findings suggest
that the increased resistance to passive ankle dorsiflexion in spastic CP is related to the inability of MG muscle fascicles to elongate with increased passive force. Compared to the typically developed group, the spastic CP group also produced 56% less active ankle plantarflexion torque across the available range of ankle joint motion, and had greater levels of antagonistic co-contraction and a longer Achilles tendon slack length. The increased Achilles tendon slack length may facilitate a greater storage and recovery of elastic energy and partially compensate for decreased force and work production by the muscles of the triceps surae during activities such as locomotion.

Overall findings from this thesis indicate that the morphological and mechanical properties of the MG muscle and Achilles tendon are altered in individuals with spastic CP, and together contribute to ankle plantarflexor muscle weakness, restricted ankle dorsiflexion range and increased ankle stiffness observed in CP. Treatments for improving function in spastic CP should be directed towards the muscular as well as neural system.
Acknowledgements

I thank greatly my supervisor Dr Glen Lichtwark. He captured my curiosity and opened the doors to biomechanics research. His guidance along the research path, and every stop on the way, was exceptional. I just tried to keep up. It has been a privilege to be able to count myself as part of his research group. I sincerely thank my supervisor A/Prof Rod Barrett, whose knowledge and carefulness have been a major component in the completion of this work. I am gracious for the freedom that he allowed me to complete this work, but also the assistance along the way. To both my supervisors, I hope our collaborations continue into the future.

I am profoundly grateful to Elizabeth for her unwavering patience and support. She has always encouraged me to take opportunities and believed in me. Thank you Meg for keeping the child in me. I sincerely thank my Mum and Dad for their support and for continually placing my interests above their own, a factor that has allowed me to follow many opportunities. I would like to also thank my postgraduate colleagues Neil Cronin, Chris Carty and Jarred Gillett. Thanks for the good times. There will be many more.

In addition, I thank A/Prof Rob Herbert for input all the way along my PhD journey. We have had numerous valuable discussions and he has provided a number of memorable occasions. I am grateful to A/Prof Ros Boyd for her assistance with subject recruitment and opportunities to present my research to the CP community in Brisbane. I also thank Mr Adam Bowern for his technical assistance whenever I needed it. I am grateful to Mr Andrew Hegarty from Queensland X-Ray for his MRI technical assistance and the staff of the Hugh Williamson Gait Analysis Laboratory, The Royal Children’s Hospital, Melbourne for their assistance with my study in young children. I thank Dr Leanne Johnston from the CP League Queensland for her assistance with subject recruitment.
This work was supported by a Biomedical Postgraduate Scholarship (481953) from the National Health and Medical Research Council, Australia.
Lee Barber

September 2011
Peer reviewed publications

Appendix D: Invited Commentary on this publication (Shortland, 2011).

Conference presentations

Table of contents

Abstract .. ii

Acknowledgements ... iv

Statement of originality ... vi

Peer reviewed publications ... vii

Conference presentations ... viii

Table of contents ... ix

List of tables .. xiv

List of figures .. xv

Chapter 1. Introduction .. 1

1.1. Background ... 1

1.2. Statement of the problem .. 3

1.3. Significance of the problem ... 3

1.4. General purpose .. 4

1.5. Specific purpose .. 4

1.6 Thesis Organisation .. 5

1.7. Abbreviations ... 7

1.8. Acknowledgement of published papers ... 8

Chapter 2. Literature review ... 11

2.1. Spastic CP ... 11

2.1.1. Features of spastic CP .. 11
2.1.2. Musculoskeletal pathology in spastic CP ... 12
2.1.3. Gross motor development in spastic CP ... 13
2.1.4. Management of spastic CP .. 14

2.2 Morphological properties of spastic muscle .. 16
2.2.1 Muscle volume ... 16
2.2.2 Muscle fascicle length .. 17
2.2.3 Pennation angle .. 19
2.2.4 Muscle length .. 19
2.2.5 Muscle PCSA ... 21

2.3. Mechanical properties of spastic muscle and tendon ... 22
2.3.1 Passive mechanical properties of spastic muscle .. 25
2.3.2 Active mechanical properties of spastic muscle .. 26
2.3.3 Mechanical properties of the Achilles tendon in spastic muscle 26

2.4 Measurement of muscle morphological and mechanical properties 27
2.5 Summary ... 30

Chapter 3. Validation of a freehand 3D ultrasound system for morphological measures of the
medial gastrocnemius muscle ... 31

3.1 Introduction ... 32

3.2 Methods ... 34
3.2.1 Subjects .. 34
3.2.2 Experimental design ... 34
3.2.3 3DUS set-up and calibration .. 34
3.2.4 3DUS measurements .. 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.5. Phantom volume validation</td>
<td>38</td>
</tr>
<tr>
<td>3.2.6. MRI set-up and measurements</td>
<td>39</td>
</tr>
<tr>
<td>3.2.7. Statistical analysis</td>
<td>39</td>
</tr>
<tr>
<td>3.3 Results</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1. Validity</td>
<td>40</td>
</tr>
<tr>
<td>3.4. Discussion</td>
<td>44</td>
</tr>
<tr>
<td>Chapter 4. Medial gastrocnemius muscle volume and fascicle length in children aged 2-5 years</td>
<td>49</td>
</tr>
<tr>
<td>4.1. Introduction</td>
<td>50</td>
</tr>
<tr>
<td>4.2. Methods</td>
<td>52</td>
</tr>
<tr>
<td>4.2.1. Participants</td>
<td>52</td>
</tr>
<tr>
<td>4.2.2. Experimental protocol</td>
<td>53</td>
</tr>
<tr>
<td>4.2.3. Ultrasound measures</td>
<td>53</td>
</tr>
<tr>
<td>4.2.4. Statistical analysis</td>
<td>54</td>
</tr>
<tr>
<td>4.3. Results</td>
<td>55</td>
</tr>
<tr>
<td>4.3.1. Participant characteristics</td>
<td>55</td>
</tr>
<tr>
<td>4.3.2. Correlation analysis</td>
<td>56</td>
</tr>
<tr>
<td>4.3.3. Analysis of variance</td>
<td>57</td>
</tr>
<tr>
<td>4.4. Discussion</td>
<td>58</td>
</tr>
<tr>
<td>Chapter 5. Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy</td>
<td>65</td>
</tr>
<tr>
<td>5.1. Introduction</td>
<td>66</td>
</tr>
<tr>
<td>5.2. Methods</td>
<td>68</td>
</tr>
</tbody>
</table>
Table of contents

5.2.1. Subjects .. 68
5.2.2. Experimental protocol .. 68
5.2.3. Ultrasound .. 69
5.2.4. 3D motion capture .. 70
5.2.5. EMG .. 70
5.2.6. Passive ankle joint and MG muscle fascicle mechanical properties 71
5.2.7. Statistical analysis .. 71
5.3. Results ... 72
5.3.1. Participant characteristics ... 72
5.3.2. Joint and fascicle level mechanical properties ... 72
5.4. Discussion ... 75

Chapter 6. Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy 79

6.1. Introduction ... 80
6.2. Methods .. 82
6.2.1. Participants ... 82
6.2.2. Data collection and analysis procedures .. 82
6.2.3. Active MG force-length properties .. 83
6.2.4. Achilles tendon properties .. 84
6.2.5. Statistical analysis .. 84
6.3. Results ... 85
6.4. Discussion ... 87

Chapter 7. General discussion .. 91
Table of contents

7.1. Summary of experimental findings ... 92

7.2. Synthesis of experimental findings ... 94

New insight into MG muscle morphology in individuals with spastic CP 94

Fundamental differences in the active and passive mechanical properties of the ankle joint,
MG muscle fascicle and Achilles tendon in individuals with spastic CP. 96

7.3. Clinical relevance .. 98

7.4. Methodological considerations ... 99

7.5. Future research .. 101

7.6. Conclusions ... 102

Appendix A. Supporting information for Experiment 2 (Chapter 4) ... 105

Appendix B. Supporting information for Experiment 3 (Chapter 5) ... 109

Appendix C. Validity and reliability of a simple ultrasound approach to measure medial
gastrocnemius muscle length ... 111

C.1. Introduction ... 113

C.2. Materials and Methods ... 114

C.3. Results .. 117

C.4. Discussion ... 121

Appendix D. Invited commentary on original publication Barber et al., (2011). 125

References .. 127
List of tables

Table 2.1. Characteristics of studies investigating lower leg muscle volume in children with spastic CP .. 17

Table 3.1. Comparison of muscle volume and muscle belly length measurements of the MG between freehand 3DUS and MRI ... 43

Table 3.2. Reliability of intra-session repeated measures of muscle volume and muscle belly length by freehand 3DUS .. 44

Table 4.1. Demographic, anthropometric, and ankle angle data for the spastic CP and TD groups. .. 56

Table 4.2. Characteristics of studies investigating lower leg muscle volume in children with........ 60

Table 5.1. Demographic, anthropometric, knee and ankle angle and MG muscle size data for the 73

Table 5.2. Ankle joint level and MG fascicle level measures for the .. 75

Table A.1. Pearson’s correlation coefficients for defined variables (x versus y) in the................... 107

Table C.1. MG muscle length measured using the US-tape and freehand 3DUS methods for the TD and CP groups .. 118

Table C.2. Reliability of intra-session repeated measures of MG muscle length by the US-tape method.. 121
List of figures

Figure 2.1. Musculoskeletal pathology and management in children with spastic CP 16
Figure 2.2. Fascicle length and pennation angle of the MG... 18
Figure 2.3. Muscle length of the MG from 3D volume rendering of a MRI of the lower limb 20
Figure 2.4. Representation of the force-length relationship of muscle .. 23
Figure 3.1. 3DUS transducer setup. ... 35
Figure 3.2. Subject position for 3DUS scanning in the water bath .. 36
Figure 3.3. 3DUS and MRI MG axial scans and volume rendering .. 38
Figure 3.4. Scatter plots and Bland–Altman plots of MG volume measured by freehand 3DUS and MRI ... 41
Figure 3.5. Scatter plots and Bland–Altman plots of MG muscle belly length measured by freehand 3DUS and MRI. .. 42
Figure 4.3. Muscle volume, muscle length, fascicle length and pennation angle versus ankle angle .. 58
Figure 5.2. Ankle torque versus ankle angle, ankle stiffness versus ankle torque, MG fascicle length versus ankle angle and ankle torque versus MG fascicle length.. 74
Figure 6.1. Active absolute and normalised ankle torque versus angle and ankle torque versus MG fascicle length... 86
Figure 6.2. Active ankle torque versus Achilles tendon length and normalised ankle torque versus Achilles tendon strain... 87
Figure A.1. Scatter plots and corresponding regression lines of representative data at neutral ankle angle for muscle volume, belly length, fascicle length and pennation angle at neutral ankle angle versus age ... 105
Figure A.2. Scatter plots and corresponding regression lines of representative data at neutral ankle angle for muscle volume versus weight, belly length versus fibula length, fascicle length versus fibula length and pennation angle versus fibula length at the neutral ankle angle... 106
<table>
<thead>
<tr>
<th>Figure B.1. Example ankle torque versus ankle angle data demonstrating the method for determining the gravity corrected torque .. 109</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure C.1. US-tape method for measuring MG muscle belly length.. 116</td>
</tr>
<tr>
<td>Figure C.2. Scatter plots and Bland–Altman plots showing correspondence between 3DUS and US-tape measures of the MG muscle length in three ankle positions for TD individuals................................. 119</td>
</tr>
<tr>
<td>Figure C.3. Scatter plots and Bland–Altman plots showing correspondence between 3DUS and US-tape measures of the MG muscle length in three ankle positions) for individuals with CP......... 120</td>
</tr>
</tbody>
</table>