Dynamic Integrated Learning: Managing Knowledge Development in Road Transport

Jason Craig Lewis

B AdVocEd (Hons)

School of Education and Professional Studies
Arts, Education and Law
Griffith University

Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy

December 2010
STATEMENT OF ORIGINAL OWNERSHIP

I hereby certify that this work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Signed: Date: 15 December 2010
During the course of this project, a number of public presentations have been made which are based on the work presented in this thesis. They are listed here for reference.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Professor Stephen Billett, for his guidance and direction throughout the duration of the study. I wish also to thank Volvo Trucks Australia and Mercedes-Benz Australia for their support, and for their permission to use the various diagrams and photographs in this report. My thanks also go to the management of the Gold Coast City Council, Bevchain, and Origin Energy for the opportunity to conduct this research at their premises. Additionally, the positive contributions from the many truck drivers involved this study has been outstanding. Their experience, knowledge, insight, professionalism, and passion for road transport have been invaluable - thank you. I would also like to express my gratitude to Elizabeth Stevens for her professionalism, thoroughness, and patience in editing my thesis.

Finally, I would like to thank my dear wife April for her unwavering support and encouragement throughout the duration of my study.

(Volvo Trucks Australia and Mercedes-Benz Australia product information, including diagrams and images, used in this paper are not to be reproduced without prior written permission.)
This investigation seeks to understand and elaborate how learners who work in circumstances that might be described as being relatively socially isolated come to further develop their working knowledge. The focus here is on road transport workers (i.e. truck drivers) who often work alone, yet are faced with learning to accommodate and respond to new work challenges and ways of working. Increasingly, these workers are required to engage with and understand work knowledge that is represented symbolically through computerised display systems and that requires capacities distinct from those required by earlier generations of road transport workers. In particular, how road transport operators learn new types of knowledge, in view of the recent introduction to heavy road transport of technologies such as computerised engine management systems, automatic gearboxes, and computerised displays (also known as Driver Information Systems or DIS), is considered within this study. Moreover, given the relative social isolation that comprises their work, it is important to understand how the personal and social (i.e. internal and external) contributions to learning development interact in this process of learning.

The road transport sector has been quick to introduce new technology into its operations, which is changing the way information and knowledge is presented to drivers, from the “old” technology where it was explicit, to the “new” technology where the knowledge required for performance is abstract, remote, and “hidden”. Subsequently, these drivers’ ways of thinking and learning must change to make the transition from the old technology to the new. So, while technologies have been introduced to manage emissions, reduce maintenance costs, increase safety, and make road transport more economically competitive, they sit alongside increased demands associated with vehicle utilisation. Also, integrated electronic systems have changed how information is presented to the driver through abstract computerised symbols. Additionally, these systems have replaced the earlier methods of driving, which previously relied on sensory inputs such as vibrations, sound, and even smell, and instead require a new set of cognitive skills that are reliant on a higher order of conceptual knowledge. The ability to learn these new types of knowledge, therefore, has implications for developing and maintaining professional competence in a rapidly changing society.

Whilst recent research has identified interrelations between both personal and social contributions to individuals’ learning and knowledge development, and how they
interact, to varying degrees, there is a need to map a comprehensive account of how these learning practices are enacted in situations of relative social isolation where many people work and learn. Hence, this dissertation advances an integrated account of this learning that combines both individual and social influences to explain the underlying processes that affect knowledge construction. Moreover, as much learning occurs throughout working life, such as in the case of road freight transport workers where it occurs in relative isolation without the benefits of expert guidance, supervision, or help, there is a need to account for how individuals’ personal agency and self-directed learning are exercised in these circumstances, particularly when addressing learning that is difficult to access and construct. Hence, a direct contribution provided through this dissertation is a model that builds on the knowledge-creation approach to learning proposed by Paavola et al. (2004) and Nonaka and Takeuchi’s (1995) model of knowledge creation. The Dynamic Integrated Learning Model, proposed here, builds upon and assists in explaining the dynamics and interrelatedness of different factors that contribute to learning and, therefore, enhance workplace performance.

The findings both support and further elaborate the concept of a relational interdependence between social and personal contributions as an explanatory base to understand workers’ learning and development. As such, they support Billett's (2006b) claim that, "rather than being reciprocal or mutual, these relationships are negotiated and differ in intensity: they are relational" (p. 14). Furthermore, the research identified that there was interdependence between social and personal factors and these were enacted relationally depending upon both situational (i.e. work tasks) and individual factors (i.e. personal preferences and knowledge).
TABLE OF CONTENTS

Statement of original ownership ... iii
Publications .. v
Acknowledgements .. vii
Abstract .. ix
Table of contents .. xi
References .. xvi
Appendices ... xviii
List of tables ... xix
List of figures ... xxi
Chapter 1: Knowledge development in road transport

1.1 Learning and working in social isolation

1.1.1 Emerging workplace learning trends

1.2 New knowledge and road transport

1.2.1 Technological, social, and economic factors
1.2.2 Changing technology in road transport
1.2.3 Significance of driver skill development
1.2.4 Barriers to knowledge development
1.2.5 Learning and working within the road transport sector

1.3 Aims of the investigation

1.4 Practical significance of the investigation

1.5 Research questions

1.6 Research method: Procedures

1.7 Overview of chapters

1.8 Key deductions from these findings

1.9 Implications for developing professional practice

1.10 Contributions to current debates

Chapter 2: Conceptions of knowledge: Individual and social contributions to workplace learning

2.1 Individual and social learning approaches

2.2 Knowledge creation

2.3 Approaches to knowledge development

2.4 Individual and social contributions to knowledge development

2.4.1 Individual conceptions of knowledge
2.4.2 Social conceptions of knowledge
2.4.3 Bridging individual and social contributions to learning

2.5 Vocational practice in knowledge development

2.5.1 Individual-centred knowledge
2.5.2 Developing propositional and procedural knowledge
2.5.3 Dispositional knowledge and engagement in work tasks
2.5.4 The procedural, propositional, and dispositional relationship

2.6 The changing requirements of road transport
6.7.6 Social interaction – Key findings ...183
6.7.7 Preferred learning methods – Key findings184

6.8 Conclusion: Technology and learning in social isolation.............................184

Chapter 7: Social and individual workplace engagement: Observation findings ..187

7.1 The workplace as a learning environment ...187
7.2 Observation data collection ..188
7.3 Data analysis ..189
 7.3.1 Describing the culture, organising data, and identifying patterns190
7.4 Descriptive observation ..190
 7.4.1 Workplace layout ..191
 7.4.1.1 Waste Group layout: Depot ...191
 7.4.1.2 Waste Group layout: Transfer station ..191
 7.4.1.3 Waste Group layout: Tip site ..192
 7.4.1.4 Waste Group layout: Volvo FM9 truck ..193
 7.4.1.5 Beer Group layout: Brewery and bulk store195
 7.4.1.6 Beer Group layout: Mercedes Fleetstar prime mover196
 7.4.1.7 Workplace layout: Summary and deductions198
 7.4.2 Participants ..198
 7.4.2.1 Participants: Summary and deductions ..200
 7.4.3 Workplace activities and technology ...201
 7.4.3.1 Waste Group activities and technology ...202
 7.4.3.2 Beer Group activities and technology ...205
 7.4.3.3 Workplace activities and technology: Summary and deductions208
 7.4.4 Routines and events ...209
 7.4.4.1 Routines and events: Summary and deductions211
 7.4.5 Workplace goals and dispositions ..212
7.5 Summary of findings ..213
7.6 Conclusion: Social and individual workplace engagement215
Chapter 8: The dynamic integration of social and individual contributions to learning: Conclusion

8.1 Interactions between individual and social contributions

8.2 Research questions

8.3 Key deductions from these findings

8.4 Contributions to current debates

8.5 Recommendations for improving driver education and learning

8.6 Recommendations for further research

8.7 Implications for developing professional practice

8.8 Concluding comments

References

Appendices

Appendix A Survey instrument

Appendix B Interview instrument

Appendix C Observation instrument

Appendix D Ethical clearance

Appendix E Letter of request

Appendix F Information sheet

Appendix G Expression of agreement

Appendix H Consent form

Appendix I Beer Group loading tables
List of Tables

Table 3.1 Cognitive and social factors involved in pilot nontechnical skill development ..69
Table 3.2 Framework for the contributions to learning and their interrelatedness ...73
Table 4.1 Key areas of individual and social aspects of the survey84
Table 4.2 Target Group Industries, Trucks, Participants, and Rate of Participation..86
Table 4.3 Interview groups: Age and experience ...94
Table 4.4 Interview Groups: Driver details ..95
Table 4.5 Dimensions of descriptive observation ..97
Table 4.6 Strategies for dealing with threats to validity101
Table 5.1 Interview Groups: Participation rates...108
Table 5.2 Driver education levels ..110
Table 5.3 Workplace specific qualifications of the drivers111
Table 5.4 Impact of technology on ease of driving ..112
Table 5.5 Learning strategies currently used for work practices114
Table 5.6 Ranking of responses for current learning strategies115
Table 5.7 Learning strategies proposed for effective learning116
Table 5.8 Ranking of responses for proposed effective learning117
Table 5.9 Comparison of existing and proposed learning strategies118
Table 5.10 Learning strategies and preferences for interview groups121
Table 5.11 Ranking of learning strategies for interview groups122
Table 5.12 Usefulness of technology in the workplace124
Table 5.13 Ranking of usefulness of technologies ..125
Table 5.14 Effectiveness of types of feedback ..127
Table 5.15 Ranking of effectiveness of types of feedback127
Table 5.16 Importance of social interaction for learning in the workplace129
Table 5.17 Ranking of importance of social interaction for learning in the workplace ...130
Table 5.18 Overview of learning preferences in road transport132
Table 5.19 Ranking of learning preferences in road transport132
Table 6.1 Combined interview groups: Age and experience147
Table 6.2 Frequency of workplace events – Waste Group150
Table 6.3 Frequency of workplace events – Beer Group152
Table 6.4 Workplace learning culture – Waste Group154
Table 6.5 Workplace training: Waste Group ..158
Table 6.6 Learning strategy preferences for individual drivers162
Table 6.7 Problem solving strategy preferences for individual drivers165
Table 6.8 Feedback received by Waste Group and Beer Group drivers171
Table 6.9 Importance and occurrence of workplace social interaction for individual drivers ...175
Table 7.1 Dimensions and categories of descriptive observation189
Table 7.2 Combined interview groups: Age, experience, and years with company ..200
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Interdependencies between the individual and social contributions to learning.</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>The earlier Driver Information Display (top) contrasted with the modern, highly symbolic and computerised Driver Information Display (bottom).</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Gear selector and Driver Information Display.</td>
<td>43</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>The Knowledge Spiral.</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>The Knowledge-Creation Model of Learning.</td>
<td>50</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>The Acquisition / Participation Learning Model versus the Dynamic Integrated Learning Model (tentative).</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>The individual and social contributions to knowledge development.</td>
<td>59</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Learning categories.</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Comparison of linear to dynamic learning and dimensions of learning in the Dynamic Integrated Learning Model (DILM).</td>
<td>75</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Rigid truck (a) and prime mover (b).</td>
<td>91</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Mercedes-Benz prime mover.</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The integration of data analysis.</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Three different data sources.</td>
<td>98</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>Volvo FM9 8x4 model truck.</td>
<td>142</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Volvo FM9 6x4 Prime Mover hook lift truck.</td>
<td>142</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Mercedes-Benz Actross 2644 Fleetstar prime mover truck and trailer.</td>
<td>144</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>30-cubic meter bin in place at transfer site.</td>
<td>192</td>
</tr>
<tr>
<td>Figure 7.2</td>
<td>Volvo FM9 prime mover at tipping site.</td>
<td>192</td>
</tr>
<tr>
<td>Figure 7.3</td>
<td>Interior of Volvo truck cab.</td>
<td>193</td>
</tr>
<tr>
<td>Figure 7.4</td>
<td>The Driver Information System (DIS).</td>
<td>194</td>
</tr>
<tr>
<td>Figure 7.5</td>
<td>The I-Shift gear leaver.</td>
<td>195</td>
</tr>
<tr>
<td>Figure 7.6</td>
<td>Mercedes-Benz gear selector.</td>
<td>196</td>
</tr>
<tr>
<td>Figure 7.7</td>
<td>Mercedes-Benz truck cab layout.</td>
<td>197</td>
</tr>
</tbody>
</table>
Figure 7.8 The Volvo I-Shift Gear Selector in automatic mode and in manual mode...203
Figure 7.9 Hydraulic lever set up and work task...204
Figure 7.10 Hook lift hydraulic bin lift..204
Figure 7.11 Brewery loading facility..206
Figure 7.12 Unloading at the storage and distribution facility.................................208
Figure 8.1 The Dynamic Integrated Learning Model..227