Heuristic Based Search for Protein Structure Prediction

Mahmood Abdur Rashid
B.S.M.E., M.S.C.S.

Institute for Integrated and Intelligent Systems
Science, Environment, Engineering and Technology
Griffith University, Brisbane, Australia

Submitted in fulfilment of the requirements of the degree of
Doctor of Philosophy

December 19, 2013
Statement of Originality

This work has not previously been submitted for a degree or diploma to any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Mahmood A. Rashid
Brisbane, December 19, 2013
Dedicated to my parents and family for their unconditional love and support
This work has benefited greatly from the input and support of many people over the past four years. I would like to express my gratitude to everyone who contributed to it in one way or other.

First and foremost, I would like to thank my supervisors Professor Abdul Sattar, and Dr. Md Tamjidul Hoque. They have all been really helpful and supportive throughout my PhD candidature. Whenever I had a problem, I always got them beside me. I would also like to thank Dr. Bela Stantic, Dr. Guido Governatori and Dr. Duc Nghia Pham who have helped me in numerous occasions throughout my candidature.

A big thank must go to Dr. M.A. Hakim Newton. I appreciate for his valuable time, innovative ideas, and research experiences that he shared with great collaboration for last four years. Without his continuous guidance it was difficult for me to overcome the tough times in the PhD pursuit. His willingness to share his knowledge and readiness to help others are unequaled.

I am also thankful to other PhD Candidates: Mr. Swakkhar Shatabda, Mr. Iman Dehzangi, Ms. Thach-Thao Nguyen Duong, Mr. Kushal Ahmed, Ms. Zahra Shahabi Kargar, Mr. Yi Fan, Mr. Shaowei Cai, Mr. Roozbeh Derakhshan who shared the lab wonderfully to create a great working environment. I am also thankful to Mr. Lukas Folkman and Dr. Trent Higgs for their collaborations. However, I must want to give a special thank to Swakkhar for his ever helpful attitude.

Furthermore, I would like to acknowledge Griffith University and NICTA for their financial support during this study and for providing the financial supports to attend several conferences. I also acknowledge these two institutions for providing wonderful working environment with sufficient logistic supports. I am very much thankful to Ms. Natalie Dunstan (IIIS) and Ms. Sarah Simms (NICTA) for their extreme supports regarding logistics and official requirements during past four years.

I thank my friends in Brisbane for the fantastic time we have had, and my friends on the other side of the world for keeping in touch despite the distance.

Finally, I want to thank my parents and family. I am ever grateful to my wonderful boys Fardeen and Farhaan, and my forbearing wife Salma Naz for their unbounded sacrifice during my study.
Abstract

This thesis presents our heuristic based search approaches for protein structure prediction. Proteins are essentially sequences of amino acids. Every protein adopts a specific three-dimensional (3D) structure to perform a specific task. The function of a protein depends on its 3D native structure that has the minimum free energy level. Proteins are the fundamental component of all living cells. However, misfolded proteins cause fatal diseases. Therefore, protein structures are very important in biotechnology and drug design. Hence, protein structure prediction (PSP) has emerged as a very important multi-disciplinary research problem.

Given a protein’s amino acid sequence, the protein structure prediction problem is to find a three dimensional structure of the protein such that the total free energy amongst the amino acids in the sequence is minimised. In-vitro laboratory methods used in PSP are very time-consuming, cost-intensive, and failure-prone. On the other hand, computational predictive methods are NP-hard even when conformation models are simplified by using low-resolution energy function and discretised lattice-based structures.

There are three computational approaches for protein structure prediction: homology modeling, protein threading and ab initio approach. The prediction quality of homology modeling depends on the sequential similarity with proteins that have previously known structures. On the other hand, protein threading also known as fold recognition, is based on the structural similarity with the previously known fold families. Our work is based on the ab initio approach that only depends on the amino acid sequence of the target protein. The computational methods found in the literature are largely based on optimisation algorithms. The widely used algorithms in PSP are genetic algorithms, memetic algorithms, ant colony optimisation, particle swarm optimisation, simulated annealing, stochastic local search, and Monte Carlo simulation.

This thesis focuses on genetic algorithms and stochastic local search algorithms because they are found promising in conformational search. A genetic algorithm (GA) is a population based optimisation algorithm inspired from nature. Genetic algorithms mimic genetic mutation, recombination and survival for the fittest principles. On the other hand, local search (LS) algorithms, starting from a single initial solution, move from one solution to another to find a better solution in the vicinity of the current solution. However, for large sequences, the performance of both algorithms deteriorate and the search often get stuck in plateaus and/or local minima. In general, the success of GA and LS methods crucially depends on the balance of diversification and intensification of the search. Any further progress to these algorithms require addressing the above issues appropriately.
In this thesis, we introduce a new population based algorithm (GA\(^+\)) under the GA framework for simplified PSP. We use hydrophobic-polar (HP) energy model on 3D FCC lattice to simplify the problem. In GA\(^+\), we use i) an exhaustive generation approach to diversify the search; ii) a novel hydrophobic core-directed macro-mutation operator to intensify the search; and iii) a random-walk based stagnation recovery technique.

In HP model, protein structures have hydrophobic cores (H-core) that hide the hydrophobic amino acids from water and expose the polar amino acids to the surface to be in contact with the surrounding water molecules. Taking H-core formation as an objective, in this thesis, we present a new spiral search algorithm for PSP. The spiral search algorithm, denoted by SS-Tabu, works in a spiral fashion within a hydrophobic-core directed local search that is guided by tabu meta-heuristic.

In a separate work, we present a parallel processing technique to expedite exploration by starting spiral search from different points. In this approach, a number of random initial solutions are generated and distributed to different threads. We allow each thread to run for a pre-defined period of time. The improved solutions from the threads are merged together and a number of solutions are selected for next round processing.

As we find no single algorithm suits the best for the protein structure prediction problem, we have tried a hybrid search technique to mix the power of stochastic local search and population based genetic algorithms to gain improvements. In this approach, we embed our spiral search algorithm within the GA\(^+\) framework. The spiral search improves the individuals within the GA\(^+\) population and quickly builds a rich population.

A detailed 20 × 20 energy model could better capture the behaviour of the actual energy function than a very simple 2 × 2 HP energy model. In contrast, the HP energy model could effectively bias the search towards certain promising directions. We have used the HP model with a detailed 20 × 20 model in a mixed fashion in GA+ and parallel spiral search frameworks and found that the mixed setting works more effectively than using the energy models separately.

We evaluated our approaches on a set of benchmark proteins using FCC lattice, and the 2 × 2 HP and the detailed 20 × 20 energy models. We experimentally show that our approaches significantly outperform the current state-of-the-art approaches for the same lattice and energy models.

In conclusion, this thesis presents a new local search algorithm, a parallel local search framework, a hybrid search framework and several enhancements made to the GA framework. These algorithms and enhancements improve protein structure prediction in lattice based structures and low resolution energy models.
The scientific contributions of this research have been fully or partly published the following peer-reviewed journals and proceedings:

Journal Publications

Conference Publications

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Two Dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three Dimensional</td>
</tr>
<tr>
<td>AA</td>
<td>Amino Acid</td>
</tr>
<tr>
<td>ACO</td>
<td>Ant Colony Optimisation</td>
</tr>
<tr>
<td>AIS</td>
<td>Artificial Immune System</td>
</tr>
<tr>
<td>Avg</td>
<td>Average</td>
</tr>
<tr>
<td>BM</td>
<td>20×20 energy model by Berrera et al. [1]</td>
</tr>
<tr>
<td>BH</td>
<td>Mixed energy model combining BM and HP energy models</td>
</tr>
<tr>
<td>BnB</td>
<td>Branch and Bound</td>
</tr>
<tr>
<td>C_α</td>
<td>Alpha Carbon</td>
</tr>
<tr>
<td>C_β</td>
<td>Beta Carbon</td>
</tr>
<tr>
<td>CASP</td>
<td>Critical Assessment of Techniques for Protein Structure Prediction</td>
</tr>
<tr>
<td>CBLS</td>
<td>Constraint Based Local Search</td>
</tr>
<tr>
<td>CG</td>
<td>Chain Growth Algorithm</td>
</tr>
<tr>
<td>CHCC</td>
<td>Compact Hydrophobic Core Construction</td>
</tr>
<tr>
<td>CLP</td>
<td>Constraint Logic Programming</td>
</tr>
<tr>
<td>CP</td>
<td>Constraint Programming</td>
</tr>
<tr>
<td>CPSP</td>
<td>Constraint-based Protein Structure Prediction</td>
</tr>
<tr>
<td>DFS</td>
<td>Depth First Search</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>EGA</td>
<td>Exhaustive Genetic Algorithm</td>
</tr>
<tr>
<td>EMC</td>
<td>Evolutionary Monte Carlo</td>
</tr>
<tr>
<td>FCC</td>
<td>Face-Centred-Cubic (lattice)</td>
</tr>
<tr>
<td>FD</td>
<td>Finite Domain</td>
</tr>
<tr>
<td>FM</td>
<td>Free Modeling</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GA$^+$</td>
<td>A new genetic algorithm</td>
</tr>
<tr>
<td>H</td>
<td>Hydrophobic</td>
</tr>
<tr>
<td>HC</td>
<td>Hill Climbing Algorithm</td>
</tr>
<tr>
<td>HCC</td>
<td>H-Core centre</td>
</tr>
<tr>
<td>HCP</td>
<td>Hexagonal Close Pack (lattice)</td>
</tr>
<tr>
<td>HGA</td>
<td>Hybrid Genetic Algorithm</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HP</td>
<td>Hydrophobic-Polar (Hydrophilic)</td>
</tr>
<tr>
<td>IA</td>
<td>Immune Algorithm</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>LS</td>
<td>Local Search</td>
</tr>
<tr>
<td>LSEGA</td>
<td>Local Search Embedded Genetic Algorithm</td>
</tr>
<tr>
<td>LS-Tabu</td>
<td>Tabu guided Local Search</td>
</tr>
<tr>
<td>MC</td>
<td>Monte Carlo Algorithm</td>
</tr>
<tr>
<td>MD</td>
<td>Molecular Dynamics</td>
</tr>
<tr>
<td>MGA</td>
<td>Macro-mutation based Genetic Algorithm</td>
</tr>
<tr>
<td>MJ</td>
<td>20 × 20 energy model by Miyazawa and Jernigan [2]</td>
</tr>
<tr>
<td>MH</td>
<td>Mixed energy model combining MJ and HP energy models</td>
</tr>
<tr>
<td>MH-Tabu</td>
<td>Mixed heuristic local search guided by tabu</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>NP</td>
<td>Non Polynomial</td>
</tr>
<tr>
<td>P</td>
<td>Polar (Hydrophilic amino acids)</td>
</tr>
<tr>
<td>PDB</td>
<td>Protein Data Bank</td>
</tr>
<tr>
<td>PPC</td>
<td>Prediction of Protein Complex</td>
</tr>
<tr>
<td>PSO</td>
<td>Particle Swarm Optimisation</td>
</tr>
<tr>
<td>PSP</td>
<td>Protein Structure Prediction</td>
</tr>
<tr>
<td>PSS</td>
<td>Parallel Spiral Search</td>
</tr>
<tr>
<td>RGA</td>
<td>Randomised Genetic Algorithm</td>
</tr>
<tr>
<td>RMSD</td>
<td>Root-Mean-Square Deviation</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>SA</td>
<td>Simulated Annealing</td>
</tr>
<tr>
<td>SAW</td>
<td>Self-Avoiding-Walk</td>
</tr>
<tr>
<td>SVM</td>
<td>Support Vector Machine</td>
</tr>
<tr>
<td>SS</td>
<td>Spiral Search</td>
</tr>
<tr>
<td>SS-Tabu</td>
<td>Tabu guided Spiral Search</td>
</tr>
<tr>
<td>TM-score</td>
<td>Template Modeling score</td>
</tr>
<tr>
<td>WGA</td>
<td>Random-Walk based Genetic Algorithm</td>
</tr>
</tbody>
</table>
Table of Contents

Abstract i

List of publications iii

List of acronyms v

Table of Contents vii

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Protein structure prediction problem 1

1.2 Protein structure prediction methods 2

1.2.1 Experimental methods 2

1.2.2 Computational methods 3

1.3 Our research 3

1.3.1 Motivation 4

1.3.2 Research Approach 7

1.3.3 Contributions 9

1.4 Organisation of the Thesis 11

2 Background 13

2.1 Protein fundamentals 13

2.1.1 Amino acids 13
2.1.2 Proteins .. 14
2.1.3 Protein structures .. 16

2.2 Molecular driving forces 20
 2.2.1 Covalent bonds .. 21
 2.2.2 Electrostatics .. 21
 2.2.3 Van-der-Walls interactions 22
 2.2.4 Hydrophobicity ... 23

2.3 Protein structure prediction 24
 2.3.1 Significance of protein structure prediction 25
 2.3.2 Protein structure prediction approaches 26
 2.3.3 Computational complexity of the PSP problem 32

2.4 Simplified protein models 35
 2.4.1 On-lattice models 38
 2.4.2 Off-lattice models 38
 2.4.3 Energy model formulation 39
 2.4.4 HP based energy models 40
 2.4.5 The \(20 \times 20\) energy models 43

2.5 Summary .. 44

3 Related work .. 45
 3.1 The CASP Competition 45
 3.2 Existing PSP tools and prediction servers 46
 3.2.1 ROSETTA, ROBETTA 47
 3.2.2 Foldit .. 47
 3.2.3 TASSER ... 48
 3.2.4 I-TASSER ... 49
 3.2.5 QUARK .. 49
 3.2.6 SPARKS-X ... 50
 3.2.7 Bhageerath .. 50
 3.2.8 PROTINFO ... 50
 3.2.9 PHYRE Server .. 51
3.3 Conformational Search ... 52
 3.3.1 Genetic algorithms based approaches 52
 3.3.2 Memetic Algorithms based approaches 55
 3.3.3 Ant colony optimisation 56
 3.3.4 Simulated Annealing based approaches 56
 3.3.5 Tabu meta-heuristic based approaches 57
 3.3.6 Constraint Programming 58
 3.3.7 Hybrid approaches ... 60
 3.3.8 Other approaches ... 60
3.4 Summary ... 61

4 Preliminaries on our approaches 63
 4.1 Ab initio protein structure prediction 63
 4.2 Optimisation algorithms 64
 4.2.1 Genetic algorithms .. 64
 4.2.2 Local search algorithm 66
 4.3 Protein structure representation 67
 4.3.1 3D FCC lattice .. 67
 4.4 Energy models .. 70
 4.4.1 HP energy model ... 70
 4.4.2 20 × 20 energy models 71
 4.4.3 MJ potential matrix 71
 4.4.4 Berrera et al. empirical energy matrix 74
 4.4.5 Energy function evaluation 74
 4.5 Method evaluation criteria 75
 4.5.1 Comparing by energy values 75
 4.5.2 Search progress with time 76
 4.5.3 Relative improvement 76
 4.5.4 The RMSD comparison 77
 4.6 Summary ... 77
5 GA$^+$ – a new genetic algorithm

5.1 GA Variants ... 80

5.2 The RGA framework ... 81

5.2.1 Implemented primitive operators 82
5.2.2 Conformation encoding and decoding 84
5.2.3 Initialising the RGA population 85
5.2.4 Evaluating the solutions 86
5.2.5 Removing the duplicate solutions 87
5.2.6 Selecting the RGA operators 88
5.2.7 Choosing the RGA population size 88
5.2.8 House keeping between generations 88

5.3 The GA$^+$ framework .. 89

5.3.1 Exhaustive generation approach 90
5.3.2 Hydrophobic-core directed macro-mutation 92
5.3.3 Random-walk based stagnation recovery 95
5.3.4 GA$^+$ – the combined efforts of all enhanced features . 98
5.3.5 Performance hierarchy amongst GA variants 100

5.4 Summary ... 100

6 Evaluating GA$^+$ framework 101

6.1 Experimental settings ... 101

6.2 Evaluating GA$^+$ on HP energy model 102

6.2.1 Experimental results and analyses 102
6.2.2 Parameter tuning for GA$^+$ using HP energy model 108

6.3 Evaluating GA$^+$ on 20 × 20 energy models 115

6.3.1 Preliminaries on 20 × 20 energy models 116
6.3.2 Evaluating GA$^+$ on BM energy model 116
6.3.3 Evaluating GA$^+$ on MJ energy model 123

6.4 Summary ... 129

7 Spiral Search – a new local search algorithm 131
7.1 Motivation ... 132
7.2 Spiral search algorithm 132
 7.2.1 Move selection 134
 7.2.2 Stagnation recovery 136
 7.2.3 Random-walk 136
 7.2.4 Relay-restart 137
 7.2.5 Managing tabu tenure 137
 7.2.6 Further implementation details 139
7.3 Results and analyses 141
 7.3.1 Benchmark 141
 7.3.2 Comparing experimental results 142
 7.3.3 Relative improvement 143
 7.3.4 Effectiveness of relay-restart 145
 7.3.5 Effectiveness of biased tabu 145
 7.3.6 Search progress 146
7.4 Summary ... 147

8 Parallelising and hybridising algorithms 149
 8.1 A parallel spiral search framework 150
 8.1.1 HP energy guided spiral search 151
 8.1.2 BM energy guided spiral search 152
 8.1.3 The parallel search framework 155
 8.1.4 Experimental results and analyses 156
 8.2 A local search embedded GA framework 163
 8.2.1 Local search embedded GA framework 164
 8.2.2 Experimental results and analyses 167
 8.3 Summary ... 171

9 Conclusion .. 173
 9.1 Contributions 173
 9.2 Future directions 176
List of references

A HP benchmark

A.1 Harvard benchmark instances used in this thesis 203
A.2 CASP9 benchmark instances used in this thesis 208

B Predicted structures

B.1 The structures predicted using GA+ 207
B.2 The structures predicted using spiral search (SS-Tabu) 210

C 20x20 benchmark

D Amino acids
List of Figures

1.1 The protein structure prediction problem .. 1
1.2 The protein folding process in nature ... 5
1.3 The hierarchical approach for protein structure prediction 6

2.1 Ionised amino acid with an example ... 14
2.2 Formation of a peptide bond ... 15
2.3 Protein structures ... 15
2.4 Primary structure .. 16
2.5 α-helix and β-sheet ... 16
2.6 Tertiary structure ... 17
2.7 Quaternary structure ... 18
2.8 Central dogma of molecular biology ... 19
2.9 Hydrogen bonding .. 22
2.10 Hydrophobic-core .. 23
2.11 Statistical of discovered sequences ... 25
2.12 Statistical comparison of structures deposited in PDB 26
2.13 Protein threading .. 29
2.14 Energy landscape of the protein folding pathways 30
2.15 Amino acid's dihedral angles ... 32
2.16 [Met]-enkephalin molecules concatenated amino acid sequence 33
2.17 Popular 3-dimensional lattice models ... 36
2.18 Popular 2-dimensional lattice models ... 37
2.19 HP off-lattice model .. 38
2.20 AB off-lattice model .. 39
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Amino acid properties</td>
</tr>
<tr>
<td>2.2</td>
<td>Kyte’s and Doolittle’s Hydropathy Index</td>
</tr>
<tr>
<td>2.3</td>
<td>HP energy matrix</td>
</tr>
<tr>
<td>2.4</td>
<td>1234 energy matrix</td>
</tr>
<tr>
<td>2.5</td>
<td>HPNX energy matrix</td>
</tr>
<tr>
<td>2.6</td>
<td>YhHX energy matrix</td>
</tr>
<tr>
<td>2.7</td>
<td>hHPNX energy Matrix</td>
</tr>
<tr>
<td>3.1</td>
<td>Existing prediction servers</td>
</tr>
<tr>
<td>4.1</td>
<td>The 20 × 20 MJ energy model by Miyazawa and Jernigan [2]</td>
</tr>
<tr>
<td>4.2</td>
<td>The 20 × 20 BM energy model by Berrera et al. [1]</td>
</tr>
<tr>
<td>5.1</td>
<td>The energy values obtained by running RGA and EGA</td>
</tr>
<tr>
<td>5.2</td>
<td>The energy values obtained by running EGA and MGA</td>
</tr>
<tr>
<td>5.3</td>
<td>The energy values obtained by running EGA and WGA</td>
</tr>
<tr>
<td>5.4</td>
<td>The energy values obtained by running RGA and EGA</td>
</tr>
<tr>
<td>6.1</td>
<td>Benchmark instances used in our experiments</td>
</tr>
<tr>
<td>6.2</td>
<td>The experimental results of GA variants for small sized proteins</td>
</tr>
<tr>
<td>6.3</td>
<td>The experimental results of GA variants for large sized proteins</td>
</tr>
<tr>
<td>6.4</td>
<td>Relative improvements of GA+ over RGA and LS</td>
</tr>
<tr>
<td>6.5</td>
<td>Evaluation of operator selection rates</td>
</tr>
<tr>
<td>6.6</td>
<td>Evaluating GA+ using BM energy model</td>
</tr>
<tr>
<td>6.7</td>
<td>Relative improvements on average energy and RMSD for BM energy</td>
</tr>
</tbody>
</table>
B.5 Optimised structures of R instances using GA$^+$

B.6 Optimised structures of CASP9 instances using GA$^+$

B.7 Optimised structures of H instances using SS-Tabu

B.8 Optimised structures of F90 instances using SS-Tabu

C.1 The 20 × 20 benchmark proteins

C.2 Two more 20 × 20 benchmark proteins

D.1 List of 20 amino acids