PADDLING PERFORMANCE IN RECREATIONAL AND COMPETITIVE JUNIOR SURFERS

Danielle Loveless
BBiomedSc, BExSc (Hons)

Submitted in the fulfilment of the requirements of the degree of Doctor of Philosophy

APRIL, 2009
ABSTRACT

Purpose: The primary purpose of this thesis was to investigate surf-paddling performance, the surf popup manoeuvre (i.e., prone to standing position) and maximal-leg power in junior male recreational and competitive surfers. Four independent studies were conducted with the aims to: i. Develop reliable testing methods of assessing maximal-paddling performance in surfers (Study 1), ii. Determine the aerobic power and paddling economy in junior male recreational surfers (SurfersREC) and junior male competitive surfers (SurfersCOMP) (Study 2), iii. Measure maximal-paddling performance and the accumulated O$_2$ (AO$_2$) deficit of a 30-s Wingate Anaerobic Test for paddling (WAnT$_{PADDLING}$) in SurfersREC and SurfersCOMP (Study 3), and iv. Characterise the timing and magnitude of the vertical ground reaction forces produced during a surf popup manoeuvre in SurfersREC and SurfersCOMP, measure maximal-leg power in SurfersREC and SurfersCOMP, and measure the influence of paddling on the popup maneuver and maximal leg power in SurfersREC (Study 4).

Methods: All subjects were junior male surfers aged 16-20 yr. SurfersCOMP were members of the Australian Junior National Team and had been competing nationally for a minimum of 2 yr in national age-group events. SurfersREC had been surfing for a minimum of 4 yr and participating in surfing at least 2 session/wk, but had not participated in competitive surfing events, other than their local board-riding events (<6 event/yr). Participation numbers for each group included; i, Study 1: eleven SurfersCOMP (17±1 yr, 61.9±3.1 kg, 173±2 cm), ii, Study 2: eight SurfersREC (18±2 yr; 66.8±13 kg, 175±10.3 cm) and eight male SurfersCOMP (18±1 yr; 68.0±11.7 kg, 172.9±9.6 cm), iii, Study 3: eight SurfersREC (18±2 yr, 66.7±6.3 kg, 169±10 cm) and eight SurfersCOMP (18±1 yr, 68.9±47 kg, 170±5 cm), iv, Study 4: ten SurfersREC (17±1 yr, 68.2±6.2 kg, 179±5 cm) and ten SurfersCOMP (17±1 yr, 62.9±9.9 kg, 172±8 cm). All paddling tests were performed on a stationary swim-bench ergometer with pulmonary gas exchange measured breath-by-breath using a metabolic measurement system. Aerobic power was
determined using an incremental-paddling test to exhaustion and paddling economy measured during paddling at four, 3-min constant-load work stages. Anaerobic power was measured from a 10-s maximal-paddle test and the 30-s WAnT\textsubscript{PADDLING} test. The AO\textsubscript{2} deficit was determined during the WAnT\textsubscript{PADDLING} as a measure of the contribution of the anaerobic energy systems to the total energy demand of the test. The timing and magnitude of the vertical ground reaction forces produced during the popup were measured on an inground force plate. Maximal vertical jump height was measured on the force plate and used as a measure of leg power. Relationships between paddling, the popup, and leg power were investigated before and after 25 min of paddling on the swim-bench ergometer, designed to replicate a competitive surfing heat.

Results: Study 1 established that peak power determined during a 10-s maximal-paddling test on a swim-bench ergometer is a reliable method both trial-to-trial ($r = 0.995$, $p < 0.001$) and day-to-day ($r = 0.983$, $p < 0.001$) to determine maximal-paddling power in surfers. Study 2 showed that there were no differences between Surfers\textsubscript{REC} and Surfers\textsubscript{COMP} for peak O\textsubscript{2} uptake (2.5 ± 0.5 L/min vs. 2.6 ± 0.4 L/min, respectively) and economy (21.8 ± 3.1 % vs. 23.8 ± 4.0 %, respectively). There were no significant correlations between aerobic power and economy with surfing experience (number of yr surfing) or frequency (session/wk). During submaximal constant-load paddling blood lactate was greater in Surfers\textsubscript{REC} (2.4 ± 0.9 mmol/L) compared to Surfers\textsubscript{COMP} (1.6 ± 0.5 mmol/L). In Study 3 peak power (Surfers\textsubscript{REC} = 292 ± 56 W vs. Surfers\textsubscript{COMP} = 404 ± 98 W, $p = 0.014$), mean power (Surfers\textsubscript{REC} = 236 ± 59 W vs. Surfers\textsubscript{COMP} = 335 ± 74 W, $p = 0.010$), and the AO\textsubscript{2} deficit (Surfers\textsubscript{REC} =1.14 ± 0.38 L vs. Surfers\textsubscript{COMP} = 1.60 ± 0.31 L, $p = 0.022$) determined during the 30-s WAnT\textsubscript{PADDLING} were all greater in Surfers\textsubscript{COMP} when compared to Surfers\textsubscript{REC}. No differences were observed between Surfers\textsubscript{REC} and Surfers\textsubscript{COMP} for peak O\textsubscript{2} uptake (2.5 ± 0.2 L/min vs. 2.7 ± 0.1 L/min, respectively) and paddling economy (19.6 ± 6.9 % vs. 21.1 ± 4.9 %). Significant correlations were observed between surfing experience and frequency with the WAnT\textsubscript{PADDLING} peak power and AO\textsubscript{2} deficit. Consistent with study 2, from the incremental paddling test no
correlations were observed between surfing experience and frequency and peak O\textsubscript{2} uptake and paddling economy. Study 4 revealed no differences between Surfers\textsubscript{REC} and Surfers\textsubscript{COMP} in the timing and magnitude of the vertical ground reaction forces produced during the popup manoeuvre. There were no differences in the leg power as a measure of jump height between Surfers\textsubscript{REC} (38.2 \pm 4.7 cm) and Surfers\textsubscript{COMP} (40.0 \pm 9.2 cm). Following 25 min of intermittent surfboard paddling there was a decrease (t = 4.553, p = 0.001) in maximal vertical jump height in Surfers\textsubscript{REC} (post paddle = 34.0 \pm 5.1 cm).

Conclusions:
No differences in aerobic power and paddling economy between Surfers\textsubscript{COMP} and Surfers\textsubscript{REC} and a greater anaerobic power and accumulated O\textsubscript{2} deficit in Surfers\textsubscript{COMP} compared to Surfers\textsubscript{REC} suggests that the measures of anaerobic performance are more closely related to surfing ability than measures of aerobic performance. No correlations between aerobic power and paddling economy with surfing experience and participation frequency, but significant correlations between anaerobic power and the accumulated O\textsubscript{2} deficit with surfing experience and participation frequency reveal that measures of anaerobic performance are more closely associated with surfing experience and participation frequency than measures of aerobic performance. A decrease in maximal vertical jump height following surfboard paddling suggests that paddling may influence leg power possibly necessary for subsequent wave-riding performance. Collectively these findings suggest that recreational and competitive surfing results in significant changes in the anaerobic energy system, more so that the aerobic energy system and than a bout of paddling can reduce leg power.
DECLARATION

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

_________________________ ______________________
Signed Dated
LIST OF PUBLICATIONS

The following submissions for publication are listed in support of this thesis:

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS ... 1
ACKNOWLEDGEMENTS ... 7
PREFACE ... 9

CHAPTER 1 BACKGROUND ... 13
1.1 An introduction to surfing .. 15
1.2 The physiology of surfing ... 20
1.3 Metabolic energy systems in surfing 25
1.4 Physiological characteristics of surfers 35
1.5 Neuromuscular function and biomechanics of surfing 40
1.6 Thesis aims and significance .. 43

CHAPTER 2 TWO RELIABLE PROTOCOLS FOR ASSESSING MAXIMAL-PADDLING PERFORMANCE IN SURFBOARD RIDERS ... 45
2.1 Introduction ... 47
2.2 Materials and Methods .. 48
2.3 Results .. 56
2.4 Discussion ... 59

CHAPTER 3 PEAK AEROBIC POWER AND PADDLING ECONOMY IN JUNIOR RECREATIONAL AND COMPETITIVE SURFERS .. 65
3.1 Introduction ... 67
3.2 Materials and Methods .. 70
3.2 Results .. 76
3.4 Discussion ... 81

CHAPTER 4 MAXIMAL-PADDLING PERFORMANCE IN JUNIOR RECREATIONAL AND COMPETITIVE SURFERS ... 89
4.1 Introduction ... 91
4.2 Materials and Methods .. 93
4.3 Results .. 100
CHAPTER 3

Table 3.1 Summary of research reporting peak oxygen (O₂) uptake for upper-body exercise in surfboard riders (surfers) of different standard

Table 3.2 Physical characteristics, surfing experience and participation patterns of recreational and competitive junior male surfers

Table 3.3 Mean values determined during four submaximal work stages of an incremental-paddling test in recreational and competitive surfers

Table 3.4 Peak values determined during the incremental-paddling test in recreational and competitive junior male surfers

CHAPTER 4

Table 4.1 Physical characteristics, surfing experience, and participation rates of junior male recreational and competitive surfers

Table 4.2 Mean values determined during an incremental-paddling test to exhaustion in junior male recreational and competitive surfers

Table 4.3 Values determined during a 30-s Wingate Anaerobic Test for paddling in junior male recreational and competitive surfers

Table 4.4 Pearson’s correlation coefficients determined between surfing experience and surfing frequency and values obtained during a 30-s Wingate Anaerobic Test for paddling and an incremental-paddling test

CHAPTER 5

Table 5.1 Intraclass correlation coefficients (ICC) for five variables of eight trials of a popup manoeuvre and vertical jump performed on a force plate

Table 5.2 Age, physical characteristics, surfing experience and participation patterns of recreational (SurfersREC) and competitive (SurfersCOMP) male surfers

Table 5.3 Five characteristic variables of a popup manoeuvre performed on a force plate in recreational and competitive surfers
LIST OF FIGURES

CHAPTER 1

Figure 1.1 a. Example of a recreational surfer paddling lightly into wave catching position; b. Example of a recreational surfer paddling maximally to catch a wave 18

Figure 1.2 a. Example of a recreational surfer at the beginning of a popup manoeuvre; b. Example of a recreational surfer at mid point of the popup manoeuvre 18

Figure 1.3 a. and b. Example of recreational surfer’s wave riding 18

Figure 1.4 Schematic representation of the procedures for estimating the accumulated oxygen (AO₂) deficit 34

CHAPTER 2

Figure 2.1 Example of a surfboard rider during paddling on the swim-bench ergometer 50

Figure 2.2 The group mean values of peak power output determined during three 10-s maximal-intensity paddling tests performed at three resistances (1, 4, 7) in twenty recreational male surfers grouped according to body mass 52

Figure 2.3 Example of a surfboard rider during a 10-s maximal-paddling test performed in a 25-m swimming pool paddling on a surfboard 53

Figure 2.4 The speed of one competitive male surfer during a 10-s maximal-intensity paddling test performed on a surfboard in a 25-m swimming pool 54

Figure 2.5 The group mean (± SD) values of peak power output determined during six 10-s maximal-intensity paddling tests performed on a swim-bench ergometer in eleven competitive male surfers 56

Figure 2.6 The group mean (± SD) values of peak speed determined during six 10-s maximal-intensity paddling tests performed in a 25-m swimming pool in eleven competitive male surfers 59

CHAPTER 3

Figure 3.1 Measurement of the pulmonary gas exchange of a surfer whilst paddling on a swim-bench ergometer 73
Figure 3.2 O₂ uptake-power relationship in recreational and competitive junior male surfers determined during paddling ergometry \(\ldots\) 75

Figure 3.3 Change in blood lactate concentration during an incremental paddling test in junior male recreational and competitive surfers \(\ldots\) 79

CHAPTER 4

Figure 4.1 The mean O₂ uptake-power relationship determined during an incremental-paddling test in a group of junior male recreational surfers and a group of junior male competitive surfers \(\ldots\) 98

Figure 4.2 Metabolic variables measured during a 30-s Wingate Anaerobic Test for paddling in junior male recreational and competitive surfers \(\ldots\) 104

CHAPTER 5

Figure 5.1 schematic diagram of the experimental design \(\ldots\) 119

Figure 5.2 Example of a recreational surfer performing popup test on the force plate, followed \(\sim\) 3 s later by a maximal vertical jump. a. prone position, b. surfing stance, c. vertical jump \(\ldots\) 121

Figure 5.3 Vertical ground reaction force over time during a surf take off vertical jump manoeuvre performed on an in ground force plate \(\ldots\) 122

Figure 5.4 25-min paddling protocol representing a competitive surfing heat previously reported to consists of 51% paddling and 42% sitting (Mendez-Villanueva et. al. (2006)) \(\ldots\) 125

Figure 5.5 Maximal vertical jump height in recreational surfers and competitive surfers \(\ldots\) 131

LIST OF EQUATIONS

CHAPTER 1

Equation 1.1 ATP use in energy production \(\ldots\) 26

Equation 1.2 Resynthesis of ATP via non-oxidative degradation of CP \(\ldots\) 26

Equation 1.3 Resynthesis of ATP via non-oxidative degradation of muscle glycogen \(\ldots\) 26

Equation 1.4 Non-oxidative production of ATP from ADP \(\ldots\) 26
Equation 1.5 Resynthesis of ATP via oxidative metabolism of Carbohydrates

Equation 1.6 Resynthesis of ATP via oxidative metabolism of lipids
ACKNOWLEDGMENTS

Thank you to the people who have supported the development of this PhD thesis.

Thank you to PhD supervisor Dr Clare Minahan, for guidance and assistance with the experimental design, testing methods and paper and thesis writing. To PhD secondary supervisor A/P Lewis Adams and final project supervisor A/P Wendy Gilleard, thank you for help with editing and compiling the final product. Thank you to all the staff at Surfing Australia, past and present, specifically Martin Grose and past Head Coach Sasha Stocker for their enthusiasm to expand the field of Exercise Science in Surfing.

Thank you to Dr Surendran Sabapathy for supporting with research ideas, lab-testing and thesis writing. Thank you to fellow research students Troy Cross, Travis Teves, and Martin Frank for hands-on assistance with data collection. Thank you to those who have helped with technical support, to Mark Andrews from Applied Motion Research, Anna Boehm from Griffith University and Robert Baglin and Cameron Phillips from Southern Cross University.

A heart felt thank you to Alicia Loveless for guidance through the PhD potholes, proofreading and moral support in the end stages of the PhD. Thank you to Greg Loveless and Sue Loveless for unconditional love and encouragement throughout every step of the PhD and university journey.

Finally, a loving thank you to Serge Benhayon, Miranda Smith and everyone with Universal Medicine, for continuously presenting love and nothing but truth, inspiring me to be all That I Am in all that I do – Not be all that I do and abandon who I am.

Danielle
In 1999, at a university open day, a well established Professor and Head of the Physiotherapy and Exercise Science Department passed on a piece of insight to a fresh faced 17 year old. The Professor said with a grin of encouragement “you’ll do fine at the university here on the Gold Coast, as long as you don’t spend too much time surfing or hanging on the beach”. Ten years later I can confidently respond “sorry Professor, on this one occasion you were wrong”.

Surfboard riding (Surfing) was once considered a leisure activity for the ‘beach hippies’ of the 60’s and 70’s. Forty years later it is now a highly competitive international sport with an estimated 4 million participants spread across all continents and supported by many millions of dollars in competition prize money and sponsorship. The growth of surfing has seen an increase in participation numbers, competition standards and surfing performance. As with other elite sports, the improvements in performance have occurred through substantial advances in equipment design and improvements in the biomechanical, physiological and psychological profile of surfboard riders (surfers). Although technical advances are clearly documented, there is a paucity of scientific evidence relating to the human performance aspects of the sport. The lack of research in this field probably relates to the young age of the sport, which was introduced to Australia in the early 1910’s but did not achieve significant participation levels until the 1950’s. Further, research on surfing is complex due to the many uncontrollable variables that influence surfing performance. These include the geographical and environmental conditions of the ocean, such as the type of ocean floor (sand, rock, reef), wave size and direction, wind speed and direction and tide and current movements.

Exercise science research in surfing began in the 1980’s, with exercise physiologist Brian. J. Lowden publishing a series of papers investigating the physical attributes, movement patterns, and common injuries of competitive surfers. Following the
conclusion of Lowdon’s research, the early 1990’s produced only a few articles, mainly investigating injury patterns in recreational and competitive surfers. Only in the last 5 years have we seen a resurgence in publications in surfing physiology and surfing biomechanics. In particular, A. Mendez-Villanueva, a Spanish researcher who completed the first PhD in surfing physiology published a number of papers, including a review of the ‘Physiological Aspects of Surfboard Riding Performance’, which covered the exercise science research undertaken in surfing up until 2005.

With the limited amount of scientific research on surfing, the physiological and biomechanical factors important for optimal surfing performance are still unclear. Such information is valuable for surfing instructors and coaches, as well as health professionals, to help target strategies for exercise training and performance improvement as well as for the prevention and management of injuries. This PhD thesis reports on scholarly and research activity aimed at expanding the understanding of the key physiological and biomechanical determinants of surfing performance.

The thesis is presented in six parts: Chapter 1 provides an overview of the background knowledge of surfing physiology. The history and movement patterns of surfing are introduced and the physiological demands of surfing and the physiological characteristics of surfers explored. The research aims of the thesis are presented in the final section of chapter 1. Chapters 2, 3, 4 and 5 describe four original experimental studies that address each of the research aims. Each of these chapters includes independent Introduction, Methods, Results and Discussion sections. Chapter 2 reports ‘Two reliable protocols for assessing maximal-paddling performance in surfboard riders’ (Study 1). Chapter 3 discusses the ‘Peak aerobic power and paddling economy in recreational and competitive junior surfers’ (Study 2). Chapter 4 presents ‘Maximal-paddling performance in recreational and competitive junior surfers’ (Study 3) and Chapter 5 reports the final study ‘Surfboard riding popup manoeuvre and leg power in recreational and competitive junior surfers’ (Study 4). Chapter 6 concludes with the
thesis discussion and conclusions, summarising the findings of all four studies and discussing the relevance of this research to the existing scientific literature on surfing.