Transdermal Fentanyl for Pain Management in Cancer Patients

Sudeep Raj Bista
BPharm MSPharm MMedRes

School of Pharmacy
Griffith Health
Griffith University

Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy

February 2015
'The woods are lovely, dark and deep.
But I have promises to keep, and miles to go before I sleep'

Robert Frost (1874-1963)

ॐ भूभुः तत्सवितुर्वरणं भगवादेवस्य धीमहि धीयो यो न प्रचोदयात् ।।
Gayatri Mantra; Rig Veda (10:16:3)

(O thou existence absolute, creator of the three dimensions, we contemplate upon thy
divine light. May he stimulate our intellect and bestow upon us true knowledge)
Abstract

Moderate to severe pain is common among cancer patients and affects 70–80% of patients with advanced cancer. We have the means and the knowledge to relieve pain in many patients, but evidence from surveys and observational studies shows that many patients have troublesome or severe pain and do not get adequate relief. Although opioids remain the only class of drug with the ability to ameliorate severe pain, even in developed countries with access to a range of opioids, opioid formulations and adjuvant therapies, pain management is still a major problem in cancer care. As there is a narrow therapeutic window between pain control and toxicity, there is also substantial potential for side-effects, and, therefore, current practice when starting patients on fentanyl (an opioid class of drug) is to begin with a low dose and titrate the dose up slowly according to pain response and adverse events. As a consequence, it is often several days before a patient’s pain is controlled. Little is known about how factors such as patient demographics, organ function, effect of enzyme inhibitor/inducer, or the drug delivery system itself influence the pharmacokinetics (PK) of fentanyl in cancer patients. Better methods are required to monitor, individualise and improve opioid dosing.

Patients with advanced malignant disease are by definition frail and have poor performance status. There is considerable reluctance on the part of health professionals to subject these individuals to non-essential tests and investigations, including the repeated venepuncture that has been necessary in PK studies to date. The use of saliva rather than plasma has been shown to be an attractive alternative for therapeutic drug monitoring (TDM) because the collection is painless, simple and cheaper than venesection. Relatively little is known about the PK profile of fentanyl in cancer patients. If the PK profile of fentanyl could be studied in a heterogeneous group of cancer patients, this could help in optimising fentanyl dosing through population PK analysis. It would further enhance the safety and efficacy of fentanyl in clinical practice. This study has examined various factors and variables that influence the PK of fentanyl, thus potentially improving the effective management of pain in cancer patients. Additionally, this study has measured drug concentrations in saliva to investigate its potential as a substitute for plasma analysis, for use in future monitoring of therapeutic drug concentrations and in PK studies.
This study was conducted using both analytical and observational methods. Paired saliva and blood samples were taken from in-patients and out-patients with malignant disease at an oncology/palliative care service at the Mater Adults Hospital, Brisbane, Australia. A visual and descriptive scale of 0–4 (0: perfectly adhered to; 4: completely peeled off the skin) developed by the Food and Drug Administration (FDA) for pharmaceutical manufacturing purposes, was used to grade the degree of fentanyl patch adhesion at the time of sampling. A study was conducted to validate this scoring tool for use in clinical practice. At the time of sampling, participants were also asked to identify their pain score on a numerical rating scale of 0–10 (0: no pain; 10: worst pain). Wherever possible, samples were taken at the same time as routine pathology testing.

A sensitive, accurate and precise method of quantifying fentanyl and nor-fentanyl in plasma and saliva samples was developed and validated using high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Total and free fentanyl and nor-fentanyl concentrations were quantified using the method developed. A protein binding study was also performed, which demonstrated that fentanyl was bound extensively to albumin (ALB) rather than α-1 acid glycoprotein (AAG). The protein binding study determined the free fraction of fentanyl available for the pharmacodynamic (PD) effect. Almost 96% of fentanyl was bound to plasma protein. This study found saliva drug concentrations to far exceed plasma concentrations, suggesting the possibility of a mechanism of active transport into saliva for fentanyl. No correlation between plasma and saliva concentration was observed, and no correlation was found between the concentration of fentanyl and its metabolite, nor-fentanyl, in either of the matrices. However both plasma and saliva mean concentrations of fentanyl were well correlated with dose, with considerable inter-patient variation at each dose. Pain score data revealed that the majority of patients had adequate pain control. A preliminary study to examine several polymorphisms in the ARRB2, BDNF and KCNJ6 genes to determine any association with fentanyl dosing showed no association with any of the genotypes investigated in our population. Population PK analysis was performed using non-linear mixed effects modelling (NONMEM) software. Various cofactors such as pain score, effect of enzyme inhibitor/inducer, liver function, renal clearance and patch adhesion were included in the modelling. Besides a priori included weight, no other patient characteristic could be identified that significantly influenced fentanyl pharmacokinetics in a predictive manner. Patch adhesion, while not identified as a significant covariate is likely to influence fentanyl exposure and should be monitored in
clinical practice. The overall degree of patch adhesion within the study cohort was high (>90% patients scored 0) and potentially the reason why incomplete patch adherence did not significantly impact on overall bioavailability in PK studies.

This study investigated many aspects of the use of transdermal fentanyl in cancer patients. Though no significant factors were found that could change the current dosing practices of fentanyl for pain management in cancer patients, various crucial findings were demonstrated. Data on protein binding, novel extraction methods and adsorption minimizing techniques in analysis should assist, and have an impact on, future clinical research and trials. A useful tool for scoring patch adhesion has been validated and deemed reliable to use in clinical practice. Detection of higher fentanyl concentrations in saliva than plasma, with a good correlation to dose, may allow saliva to be used as an alternative to plasma in PK/PD studies of fentanyl in cancer patients.
Statement of Originality

This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Sudeep Raj Bista
Acknowledgements

With profound privilege I would like to express my deepest sense of gratitude to my supervisors Dr. Alison Haywood, A/ Prof. Ross Norris and Prof. Janet Hardy for their gracious support with valuable suggestions and guidance throughout my study.

I would like to acknowledge Griffith University for providing me with a Deputy Vice Chancellor-Griffith University International Postgraduate Research Scholarship (DVC-GU-IPRS) and Griffith University Postgraduate Research Scholarship (GUPRS) to financially support my doctoral studies in Australia. Similarly I am also thankful to Mater Health Services and Mater Research Institute for allowing me to conduct the research within their premises with the necessary resources and funding.

I am thankful to Michael Lobb, Angela Tapuni and Ngaire Kingi for their untiring support. I am also grateful to all my friends and faculty members from the School of Pharmacy, Menzies Health Institute Queensland, Griffith University for their support and guidance. More specifically I would like to thank Dr. Stefanie Henning, ModelSim Group, PACE, The University of Queensland, and Dr. Larisa Haupt, IHIBI, Queensland University of Technology, for providing me with continuous support for the modelling and genetics studies and helping me to find new ideas. Likewise I am also grateful to Glenine Hamlyn AE; from Envision Editing for copy editing the thesis.

I also wish to thank all the patients, volunteers and their families for participating in my studies. It was very pleasing to hear the patients expressing the belief that my research would help them and others eventually. It encouraged me to do the best I could.

I have great respect for my parents for their constant inspiration, encouragement, and sacrifices that have allowed me to reach this level. My sincere thanks also go to my siblings and cousins in Nepal and Australia for their unceasing support.

Last but not least, I am always indebted to my beloved wife Shilpa for all her love and understanding, and for the persistent support and motivation that has steered me to successfully complete my studies. Thanks also to my son, Sachet, who has been an excellent strength and joy, and who has given me a new priority in life.
Table of Contents

Abstract .. i
Statement of Originality.. iv
Acknowledgements ... v
List of Abbreviations .. xii
List of Tables ... xv
List of Figures ... xvii
List of Equations ... xx
List of Appendices ... xxi
List of Publications, Conferences and Grants ... xxii

Chapter 1. Fentanyl for use in pain management ... 1
 1.1 Opioids in pain management .. 1
 1.2 Fentanyl .. 2
 1.3 PK of transdermal fentanyl .. 3
 1.3.1 Absorption .. 3
 1.3.2 Distribution .. 5
 1.3.3 Metabolism and elimination ... 5
 1.3.4 Adverse effects .. 6
 1.3.5 Drug interactions and PK effects of fentanyl .. 6
 1.4 Significance and outcome ... 7
 1.5 Aims and hypothesis ... 7
 1.5.1 Aims .. 7
 1.5.2 Hypothesis .. 8
 1.6 Outline of the thesis ... 8

Chapter 2. Development and validation of an HPLC-MS/MS method for the
determination of fentanyl and nor-fentanyl in human plasma and saliva 9
 2.1 Introduction .. 9
 2.1.1 High Performance Liquid Chromatography (HPLC) 10
 2.1.2 Mass Spectrometry ... 11
 2.1.3 HPLC coupled with tandem mass spectrometry ... 15
 2.1.4 Literature review of methods for quantifying fentanyl and nor-fentanyl 15
 2.1.5 Limitations of the methods published to date ... 16
 2.2 Material and Methods ... 17
 2.2.1 Reference materials and reagents ... 17
 2.2.2 HPLC-MS/MS instrumentation and conditions .. 17
 2.2.3 Preparation of calibration standards, internal standards and spiked controls.... 18
2.2.3.1 Fentanyl stock solution (0.662 mg/mL fentanyl as free base) 18
2.2.3.2 Fentanyl storage solution (10 mg/L) .. 19
2.2.3.3 Nor-fentanyl storage solution (10 mg/L) ... 19
2.2.3.4 Fentanyl/Nor-fentanyl working solutions (100 µg/L) 19
2.2.3.5 Fentanyl/Nor-fentanyl internal standard storage solution (150 µg/L) 19
2.2.3.6 Fentanyl/Nor-fentanyl internal standard working solution (1.5 µg/L) 19
2.2.3.7 Fentanyl and nor-fentanyl standard dilution solutions for calibration curve... 20
2.2.4 Sample preparation .. 20
2.2.4.1 Extraction of fentanyl and nor-fentanyl from plasma samples 20
2.2.4.2 Extraction of fentanyl and nor-fentanyl from saliva samples 21
2.2.4.3 Extraction of fentanyl and nor-fentanyl in saliva from CDB 21
2.2.4.4 Recovery of fentanyl and nor-fentanyl from CDB 22
2.2.5 Bioanalytical method validation for plasma ... 22
2.2.5.1 Specificity .. 23
2.2.5.2 Calibration and Linearity .. 23
2.2.5.3 Inaccuracy and Imprecision .. 23
2.2.5.4 Matrix effect (ion suppression) ... 23
2.2.5.5 Stability .. 24
2.2.5.6 Limit of quantification ... 25
2.2.6 Bioanalytical method validation for saliva ... 25
2.3 Results and discussion .. 25
2.3.1 Bioanalytical method validation ... 27
2.3.1.1 Specificity .. 27
2.3.1.2 Limit of quantification and sensitivity ... 30
2.3.1.3 Calibration curve and linearity ... 30
2.3.1.4 Inaccuracy and Imprecision .. 32
2.3.1.5 Matrix effect (ion suppression) ... 34
2.3.1.6 Stability .. 38
2.3.1.7 Recovery of fentanyl and nor-fentanyl from CDB 40
2.4 Conclusion .. 41

Chapter 3. Protein binding of fentanyl and its metabolite nor-fentanyl in human
plasma, albumin and α-1 acid glycoprotein ... 42
3.1 Introduction .. 42
3.2 Materials and Methods ... 44
3.2.1 Reference material and reagents ... 44
3.2.2 LC-MS/MS method .. 45
3.2.3 Preparation of working solutions and reagents .. 45
3.2.3.1 Preparation of 0.1M phosphate buffer solution (PBS) of pH 7.4 in 0.3 % NaCl... 45
3.2.3.2 Preparation of fentanyl and nor-fentanyl standard and working solutions... 45
3.2.3.3 Preparation of AAG stock solution (5 g/L) .. 45
3.2.3.4 Preparation of AAG working solution (1 g/L AAG in 2 µg/L and 0.1 µg/L fentanyl)... 45
3.2.3.5 Preparation of ALB stock solution (200 g/L) ... 46
3.2.3.6 Preparation of 40 g/L ALB in 2 µg/L and 0.1 µg/L fentanyl solution 46
3.2.4 Adsorption studies ... 46
3.2.4.1 Adsorption of fentanyl and nor-fentanyl in PBS by UF device (traditional approach) 46
3.2.4.2 Adsorption of fentanyl and nor-fentanyl to plasticware .. 47
3.2.5 PPB studies using Centrifree® UF device .. 48
3.2.5.1 Protein binding of fentanyl and nor-fentanyl in PBS containing ALB and AAG 48
3.2.5.2 Protein binding of fentanyl and nor-fentanyl in human plasma 48
3.2.5.3 Plasma protein binding study using mass balance approach (MBA) 49
3.2.5.4 Protein binding of fentanyl and nor-fentanyl in cancer patients 50
3.3 Results and Discussion .. 50
3.4 Conclusion .. 56

Chapter 4. Validation of a fentanyl patch adhesion scoring tool for clinical application .. 57
4.1 Introduction ... 57
4.1.1 TDDS design ... 57
4.1.2 Factors affecting transdermal drug delivery of fentanyl 58
4.1.3 Assessment methods for the adhesion properties of TDDS 60
4.2 Materials and Methods ... 61
4.2.1 Part 1: Survey Tool development .. 61
4.2.1.1 Recruitment of patients and volunteers .. 61
4.2.1.2 Data collection ... 62
4.2.1.3 Calculation of patch photo area ... 62
4.2.1.4 Preparation of survey tool ... 62
4.2.2 Part 2: Testing the tool .. 63
4.2.2.1 Recruitment of survey participants ... 63
4.2.2.2 Survey .. 63
4.2.3 Data analysis .. 63
4.2.4 Data management ... 64
4.2.5 Dissemination of results .. 64
4.3 Results and discussion ... 64
4.4 Conclusion .. 67

Chapter 5. Saliva as a surrogate for plasma drug concentration in PKPD studies .. 69
5.1 Introduction ... 69
5.1.1 The measurement of drugs in saliva ... 69
5.1.2 The measurement of opioids in saliva ... 71
5.2 Materials and Methods .. 72
5.2.1 Research Plan .. 72
 5.2.1.1 Study Locations ... 72
 5.2.1.2 Sample size .. 73
 5.2.1.3 Participants ... 73
 5.2.1.4 Recruitment .. 73
 5.2.1.5 Participant withdrawal .. 74
 5.2.1.6 Safety considerations / Patient safety ... 74
5.2.2 Assessments .. 74
 5.2.2.1 Baseline Documentation ... 74
 5.2.2.2 Pain scores .. 74
 5.2.2.3 Patch Adhesion .. 74
 5.2.2.4 Toxicity .. 75
5.2.3 Methods and analysis .. 75
 5.2.3.1 Sample collection and storage ... 75
 5.2.3.2 High Performance Liquid Chromatography – Tandem Mass Spectrometry (HPLC-MS/MS) .. 75
 5.2.3.3 Analysis of saliva/plasma relationship ... 76
 5.2.3.4 Pain scores .. 76
 5.2.3.5 Patch adhesion .. 76
 5.2.3.6 Protein binding of fentanyl .. 76
 5.2.3.7 Data management .. 76
 5.2.3.8 Dissemination of results and publication .. 77
5.3 Results and discussion .. 77
 5.3.1 Participants .. 77
 5.3.2 Sample size ... 78
 5.3.3 Fentanyl and nor-fentanyl analysis in plasma and saliva samples 78
 5.3.4 Pain score ... 81
 5.3.5 Patch adhesion ... 83
 5.3.6 Protein binding of fentanyl ... 87
 5.3.7 Patient preference .. 87
5.4 Conclusion .. 90
Chapter 6. Pharmacogenetics and pain control ... 91
 6.1 Introduction .. 91
 6.1.1 Pharmacogenetics of opioids ... 91
 6.1.2 Single nucleotide polymorphisms .. 92
 6.1.3 Commonly observed polymorphisms in opioids .. 92
 6.1.4 OPRM1 .. 93
 6.1.5 ARRB2 ... 94
 6.1.6 DRD2 .. 95
 6.1.7 CYP 3A4/5 metabolising enzyme ... 95
Chapter 7. Population pharmacokinetics of fentanyl: identifying patient-related factors influencing the dose-exposure variability .. 107

7.1 Introduction .. 107
 7.1.1 Population pharmacokinetics .. 107
 7.1.2 Structural model .. 109
 7.1.3 Residual unexplained variability (RUV) ... 110
 7.1.4 Between subject and between occasion variability ... 110
 7.1.5 Covariate model-building ... 111
 7.1.6 Full covariate model and final model interpretation 112
 7.1.7 Model evaluation and diagnostics .. 112
 7.1.7.1 Objective function value .. 112
 7.1.7.2 Graphical diagnostics .. 113
 7.1.8 Validation of model ... 113
 7.1.9 Model application and simulation ... 114
 7.1.10 Fentanyl population pharmacokinetics ... 115

7.2 Methods .. 115
 7.2.1 Patient and sampling ... 115
 7.2.1.1 PK data set ... 116
 7.2.2 Parameter estimation methods ... 116
 7.2.3 Pharmacokinetic model building and model selection 117
 7.2.4 Structural and statistical error model ... 117
 7.2.5 Covariate screening and modelling ... 118
 7.2.6 Predictive performance of final PK model .. 118
 7.2.7 Bootstrapping .. 118

7.3 Results and Discussion ... 119
 7.3.1 Patients ... 119
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAG</td>
<td>α-1 acid glycoprotein</td>
</tr>
<tr>
<td>ABC</td>
<td>ATP binding cascade</td>
</tr>
<tr>
<td>ABCB1</td>
<td>ATP-binding cassette B1 gene</td>
</tr>
<tr>
<td>ADME</td>
<td>absorption, distribution, metabolism, excretion</td>
</tr>
<tr>
<td>ALB</td>
<td>albumin</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>APCI</td>
<td>atmospheric pressure chemical ionisation</td>
</tr>
<tr>
<td>ARRB2</td>
<td>arrestin, beta 2 gene</td>
</tr>
<tr>
<td>BBB</td>
<td>blood-brain barrier</td>
</tr>
<tr>
<td>BDNF</td>
<td>brain-derived neurotrophic factor</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BOV</td>
<td>between occasion variability</td>
</tr>
<tr>
<td>BPI</td>
<td>brief pain inventory</td>
</tr>
<tr>
<td>BSA</td>
<td>body surface area</td>
</tr>
<tr>
<td>BSV</td>
<td>between subject variability</td>
</tr>
<tr>
<td>CDB</td>
<td>cotton dental bud</td>
</tr>
<tr>
<td>CE</td>
<td>collision energy</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CL</td>
<td>clearance</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>CrCL</td>
<td>creatinine clearance</td>
</tr>
<tr>
<td>CRF</td>
<td>case report form</td>
</tr>
<tr>
<td>CTCAE</td>
<td>common terminology criteria for adverse events</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>CXP</td>
<td>collision cell exit potential</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>DP</td>
<td>declustering potential</td>
</tr>
<tr>
<td>DRD2</td>
<td>dopamine receptor D2 gene</td>
</tr>
<tr>
<td>DT</td>
<td>dialysis tubing</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetra acetic acid</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>EP</td>
<td>entrance potential</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FOCE</td>
<td>first order conditional estimation</td>
</tr>
<tr>
<td>GC-MS</td>
<td>gas chromatography mass spectrometry</td>
</tr>
<tr>
<td>GIRK</td>
<td>G protein-activated inward rectifier potassium channel</td>
</tr>
<tr>
<td>HC</td>
<td>high control</td>
</tr>
<tr>
<td>HPLC-MS/MS</td>
<td>high performance liquid chromatography tandem mass spectrometry</td>
</tr>
<tr>
<td>HREC</td>
<td>human research ethics committee</td>
</tr>
<tr>
<td>IS</td>
<td>internal standard</td>
</tr>
<tr>
<td>ka</td>
<td>absorption rate</td>
</tr>
<tr>
<td>KCNJ6</td>
<td>G protein-activated inward rectifier potassium channel 2 gene</td>
</tr>
<tr>
<td>LC</td>
<td>low control</td>
</tr>
<tr>
<td>LLOQ</td>
<td>lower limit of quantification</td>
</tr>
<tr>
<td>LOQ</td>
<td>limit of quantification</td>
</tr>
<tr>
<td>MAF</td>
<td>minor allele frequency</td>
</tr>
<tr>
<td>MBA</td>
<td>mass balance approach</td>
</tr>
<tr>
<td>MF</td>
<td>matrix factor</td>
</tr>
<tr>
<td>MMT</td>
<td>methadone maintenance therapy</td>
</tr>
<tr>
<td>MΩ</td>
<td>megaohm</td>
</tr>
<tr>
<td>MOR</td>
<td>μ opioid receptor</td>
</tr>
<tr>
<td>MP-A</td>
<td>mobile phase a</td>
</tr>
<tr>
<td>MP-B</td>
<td>mobile phase b</td>
</tr>
<tr>
<td>MR</td>
<td>metabolic ratio</td>
</tr>
<tr>
<td>MRM</td>
<td>multiple reaction monitoring</td>
</tr>
<tr>
<td>MWCO</td>
<td>molecular weight cut off</td>
</tr>
<tr>
<td>m/z</td>
<td>mass/charge</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Centre for Biotechnology Information</td>
</tr>
<tr>
<td>NONMEM</td>
<td>non-linear mixed effects modelling</td>
</tr>
<tr>
<td>OFV</td>
<td>objective function value</td>
</tr>
<tr>
<td>OPRM1</td>
<td>opioid receptor, mu 1 gene</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffer solution</td>
</tr>
<tr>
<td>PCI</td>
<td>post column infusion</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PD</td>
<td>pharmacodynamics</td>
</tr>
<tr>
<td>PG</td>
<td>pharmacogenetics</td>
</tr>
<tr>
<td>P-gp</td>
<td>p-glycoprotein</td>
</tr>
<tr>
<td>PICF</td>
<td>participant information and consent form</td>
</tr>
<tr>
<td>PK</td>
<td>pharmacokinetics</td>
</tr>
<tr>
<td>POMC</td>
<td>pro-opiomelanocortin</td>
</tr>
<tr>
<td>PPB</td>
<td>plasma protein binding</td>
</tr>
<tr>
<td>PsN</td>
<td>pearl-speaks-NONMEM</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>R²</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>RSE</td>
<td>relative standard errors</td>
</tr>
<tr>
<td>RUV</td>
<td>residual ‘unexplained’ variability</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>TDDS</td>
<td>transdermal drug delivery system</td>
</tr>
<tr>
<td>TDM</td>
<td>therapeutic drug monitoring</td>
</tr>
<tr>
<td>UF</td>
<td>ultrafiltration</td>
</tr>
<tr>
<td>ULOQ</td>
<td>upper limit of quantification</td>
</tr>
<tr>
<td>Vd</td>
<td>volume of distribution</td>
</tr>
<tr>
<td>VPC</td>
<td>visual predictive check</td>
</tr>
<tr>
<td>WT</td>
<td>weight</td>
</tr>
</tbody>
</table>
List of Tables

Table 2.1 Comparison of ESI and APCI ... 15
Table 2.2 Methods for quantifying fentanyl and nor-fentanyl other than using
HPLC-MS/MS .. 16
Table 2.3 Methods for quantifying fentanyl and nor-fentanyl using HPLC-MS/MS ... 16
Table 2.4 MRM parameters set up for quantifying fentanyl, nor-fentanyl, fentanyl-d5
and nor-fentanyl-d5 in plasma and saliva samples.. 18
Table 2.5 Standard dilution solutions for fentanyl and nor-fentanyl........................ 20
Table 2.6 Adsorption of fentanyl and nor-fentanyl in CDB of Salivette® 26
Table 2.7 Pre-validation data using acetonitrile to extract fentanyl and nor-fentanyl from
CDB ... 27
Table 2.8 Intra- and inter-day inaccuracy and imprecision of fentanyl and nor-fentanyl
in human plasma ... 32
Table 2.9 Inaccuracy and imprecision data for fentanyl and nor-fentanyl in human
saliva ... 33
Table 2.10 Intra- and inter-day inaccuracy and imprecision of fentanyl and nor-fentanyl
in human saliva, performed by extracting analyte from CDB (Salivette®) for calibration
curve ranging from 0.02 to 10 µg/L ... 33
Table 2.11 Inaccuracy and imprecision data for fentanyl and nor-fentanyl in human
saliva, obtained by extracting analyte from CDB (Salivette®) for calibration curve
ranging from 0.02 to 50 µg/L .. 34
Table 2.12 Matrix factor for fentanyl and nor-fentanyl in plasma and saliva 34
Table 2.13 Stability study of fentanyl and nor-fentanyl in human plasma................. 38
Table 2.14 Stability study of fentanyl and nor-fentanyl in human saliva.................. 39
Table 2.15 Stability study (8 months) of fentanyl in human plasma 40
Table 2.16 Stability study (2 years) of fentanyl and nor-fentanyl in human plasma 40
Table 2.17 Normalised concentration and percent recovery of fentanyl and nor-fentanyl
in saliva from CDB extraction using three different spiked concentrations (0.02, 0.5 and
2 µg/L) ... 40
Table 3.1 Percent recovery of fentanyl in PBS using DT with two different MWCO at
90 mins of centrifugation ... 51
Table 3.2 Percent recovery of fentanyl and nor-fentanyl in PBS with two different UF
devices at various concentrations .. 52
Table 3.3 Adsorption of fentanyl to plasticware, as prepared in different solutions..... 53
Table 3.4 Protein binding of fentanyl and nor-fentanyl in phosphate buffer solution containing ALB and AAG

Table 3.5 Protein binding of fentanyl and nor-fentanyl in human plasma: comparing MBA with direct UF method

Table 3.6 Adsorption of fentanyl and nor-fentanyl from Centrifree® ultrafiltration device

Table 3.7 Protein binding of fentanyl and nor-fentanyl in cancer patients receiving transdermal fentanyl at varying doses

Table 4.1 FDA scoring system for patch adhesion

Table 4.2 Validity test (Spearman’s Rank Correlation) for survey series A and B including p values

Table 4.3 Inter-rater reliability for survey A, B and overall (A and B) expressed as k for different FDA scores with mean k values

Table 4.4 Intra-rater reliability for survey A and B for two measurements of ten common patches scored by each of 30 raters

Table 4.5 Correlation between survey results and control results by years of experience and gender of rater

Table 5.1 Patient demographics

Table 5.2 Various observations calculated from plasma and saliva samples obtained from 56 cancer patients

Table 5.3 Comparison between pain score ‘Now’ ≤3/10 and pain score ‘Now’ >3/10

Table 5.4 Patch adhesion score observed in cancer patients with respect to dose and concentration

Table 6.1 Primers for pyrosequencing (BDNF and KCNJ6)

Table 6.2 Cycling conditions for Taqman assay (ARRB2)

Table 6.3 Mean fentanyl dose and pain score by genotype groups for BDNF

Table 6.4 Mean fentanyl dose and pain scores by genotype groups for KCNJ6

Table 6.5 Mean fentanyl dose and pain score by genotype groups for ARRB2

Table 7.1 Patient demographics for covariates tested in this analysis

Table 7.2 List of covariates tested in the analysis

Table 7.3 Results of PK base model building

Table 7.4 Results of PK covariate model building

Table 7.5 Final parameter estimates from the basic and the final model with their RSE and the median parameter estimates from 500 bootstrap replicates with the 90% CI.
List of Figures

Figure 1.1 Structure of fentanyl (left) and nor-fentanyl (right) 3
Figure 2.1 A typical Salivette® showing the various components 9
Figure 2.2 Schematic representation of a HPLC system (copyright permission obtained; ©2000 Brian M Tissue, Chemistry Hypermedia Project) ... 11
Figure 2.3 Schematic representation of the general mechanism of a typical tandem mass spectrometry (copyright permission obtained; ©2002-2014 University of Bristol) 12
Figure 2.4 Schematic representation of the ESI interface (copyright permission obtained; ©2002-2014 University of Bristol) ... 13
Figure 2.5 Schematic representation of the mechanism of ESI (copyright permission obtained; ©2002-2014 University of Bristol) ... 13
Figure 2.6 Schematic representation of APCI interface (copyright permission obtained; ©2002-2014 University of Bristol) ... 14
Figure 2.7 Schematic representation of mechanism of APCI (copyright permission obtained; ©2002-2014 University of Bristol) ... 14
Figure 2.8 Specificity: Plasma (fentanyl and nor-fentanyl). Chromatogram showing extract of blank human plasma and analyte at the lower limits of quantification (LLOQ) from bottom to top: (a) blank plasma at nor-fentanyl transition (b) blank plasma at fentanyl transition (c) nor-fentanyl at LLOQ (d) fentanyl at LLOQ ... 28
Figure 2.9 Specificity: Plasma (fentanyl IS and nor-fentanyl IS). Chromatogram showing extract of blank human plasma and IS from bottom to top: (a) blank plasma at nor-fentanyl-d5 transition (b) blank plasma at fentanyl-d5 transition (c) nor-fentanyl-d5 (d) fentanyl-d5 ... 28
Figure 2.10 Specificity: Saliva (fentanyl and nor-fentanyl). Chromatogram showing extract of blank human saliva and analyte at LLOQ from bottom to top: (a) blank saliva at nor-fentanyl transition (b) blank saliva at fentanyl transition (c) nor-fentanyl at LLOQ (d) fentanyl at LLOQ ... 29
Figure 2.11 Specificity: Saliva (fentanyl IS and nor-fentanyl IS). Chromatogram showing extract of blank human saliva and IS from bottom to top: (a) blank saliva at nor-fentanyl-d5 transition (b) blank saliva at fentanyl-d5 transition (c) nor-fentanyl-d5 (d) fentanyl-d5 ... 29
Figure 2.12 Standard calibration curve for fentanyl spiked in blank human plasma at different concentrations (0.02, 0.1, 0.5, 2 and 10 µg/L) ... 30
Figure 2.13 Standard calibration curve for nor-fentanyl spiked in blank human plasma at different concentrations (0.02, 0.1, 0.5, 2 and 10 µg/L) ... 31
Figure 2.14 Standard calibration curve for fentanyl spiked in blank human saliva at different concentrations (0.02, 0.1, 0.5, 2 and 10 µg/L) .. 31
Figure 2.15 Standard calibration curve for nor-fentanyl spiked in blank human saliva at different concentrations (0.02, 0.1, 0.5, 2 and 10 µg/L) .. 32
Figure 2.16 PCI of fentanyl and nor-fentanyl in extracted human plasma using gradient flow (progressing organic phase from 10 % to 100 % over 4.5 mins and held at 100 % organic phase for 1.5 mins, then reduced to 10 % organic phase for the remainder of the run) ... 35
Figure 2.17 PCI of fentanyl and nor-fentanyl in extracted human saliva using gradient flow (progressing organic phase from 10 % to 100% over 4.5 mins and held at 100 % organic phase for 1.5 mins then reduced to % organic phase for the remainder of the run) ... 35
Figure 2.18 PCI of fentanyl and nor-fentanyl in mobile phase using 10 % organic phase .. 36
Figure 2.19 PCI of fentanyl and nor-fentanyl in mobile phase using 100 % organic phase .. 37
Figure 2.20 PCI of fentanyl and nor-fentanyl in mobile phase using gradient flow 37
Figure 4.1 Matrix (a) and reservoir (b) TDDS design .. 58
Figure 4.2 Extract of the survey tool showing 5 photographs 63
Figure 4.3 Examples of closely scored photographs: (a) score 1 (75.8%) and (b) score 2 (73.49%) .. 66
Figure 5.1 Correlation showing fentanyl and nor-fentanyl measured in plasma samples .. 78
Figure 5.2 Correlation showing fentanyl and nor-fentanyl measured in saliva samples79
Figure 5.3 Correlation showing total fentanyl concentration measured in plasma and saliva samples .. 80
Figure 5.4 Correlation showing nor-fentanyl concentration measured in plasma and saliva samples .. 80
Figure 5.5 Correlation showing total fentanyl concentration measured in plasma and pain score .. 82
Figure 5.6 Correlation showing free fentanyl concentration measured in plasma and pain score .. 82
Figure 5.7 Correlation showing fentanyl concentration measured in saliva and pain score .. 83
Figure 5.8 Correlation showing fentanyl dose administered through transdermal patch and pain score .. 83
Figure 5.9 Correlation showing total fentanyl concentration measured in plasma and patch adhesion .. 84
Figure 5.10 Correlation showing free fentanyl concentration measured in plasma and patch adhesion .. 85
Figure 5.11 Correlation showing fentanyl concentration measured in saliva and patch adhesion .. 85
Figure 5.12 Correlation showing fentanyl dose administered through transdermal patch and patch adhesion .. 85
Figure 5.13 Correlation showing pain score and patch adhesion in cancer patients receiving transdermal fentanyl at various doses .. 86
Figure 5.14 Correlation showing total plasma and saliva fentanyl concentration and dose administered to cancer patients .. 87
Figure 5.15 Correlation showing total plasma fentanyl concentration and sampling time after patch change .. 88
Figure 5.16 Correlation showing saliva fentanyl concentration and sampling time after patch change .. 88
Figure 7.1 Raw data showing plasma fentanyl concentration versus time since last patch change. The outlier (9.78 µg/L at 36 hr) was excluded .. 119
Figure 7.2 Relationship of volume of distribution and clearance to creatinine clearance .. 122
Figure 7.3 Relationship of various covariates to volume of distribution .. 122
Figure 7.4 Relationship showing various covariates against clearance .. 123
Figure 7.5 Diagnostic scatter plots (‘goodness-of-fit’ plots) for the final pharmacokinetic model .. 125
Figure 7.6 prediction-corrected Visual predictive check of the final pharmacokinetic model .. 126
List of Equations

\[Cn = \frac{(Cu \times Ws)}{Wu} \quad \text{Eq- 2. 1} \] \hspace{1cm} 22

\[\% \text{ Loss} = \frac{Ccs - Cds}{Ccs} \times 100 \quad \text{Eq- 3.2} \] \hspace{1cm} 47

\[\% \text{ Recovery} = 100 - \% \text{ Loss} \quad \text{Eq- 3.3} \] \hspace{1cm} 47

\[F_b = F_t - F_f \quad \text{Eq- 3.4} \] \hspace{1cm} 48

\[\% \text{ bound} = \frac{(F_b)}{(F_t)} \times 100 \quad \text{Eq-3.5} \] \hspace{1cm} 48

\[\% \text{ PPB} = \frac{(C2 - C3) \times V2C2 \times V2 + (C3 \times V3) \times 100}{C3 \times V1} \quad \text{Eq- 3.6} \] \hspace{1cm} 49

\[\% \text{ Recovery} = \frac{C2 \times V2 + (C3 \times V3)(C1 \times V1) \times 100}{C1 \times V1} \quad \text{Eq- 3.7} \] \hspace{1cm} 49

Unbound fraction \((F_u) = \frac{F_f}{F_t} \quad \text{Eq- 3.8}\) \hspace{1cm} 50

Bound fraction = 1 – \(F_u\) \quad \text{Eq- 3.9} \hspace{1cm} 50

\[S/P = 1 + 10(pKa - pHs) \times fp/1 + 10(pKa - pHp) \times fs \quad \text{Eq- 5.10} \] \hspace{1cm} 71

\[c(t) = \frac{\text{Dose}}{V} \times \exp\left(\frac{CL}{V} \times t \right) \quad \text{Eq- 7.1} \] \hspace{1cm} 109

\[C_{ij} = C_{\text{pred,ij}} + \varepsilon_{ij} \quad \text{Eq- 7.2} \] \hspace{1cm} 110

\[C_{ij} = C_{\text{pred,ij}} \times \exp^{\varepsilon_{ij}} \quad \text{Eq- 7.3} \] \hspace{1cm} 110

\[C_{ij} = C_{\text{pred,ij}} \times \exp^{\varepsilon_{ij}} + \varepsilon_{ij} \quad \text{Eq- 7.4} \] \hspace{1cm} 110

\[\Theta_i = \Theta_{\text{pop}} \times e^{\eta_i} \quad \text{Eq- 7.5} \] \hspace{1cm} 111

\[\Theta_{ik} = \Theta_{\text{pop}} \times e^{(\eta_i + \kappa_i)} \quad \text{Eq- 7.6} \] \hspace{1cm} 111
List of Appendices

Appendix 1. MHS HREC approval HREC/13/MHS/18 – Patch Adhesion Study 135
Appendix 2. GU HREC approval PHM/18/13/HREC – Patch Adhesion Study 135
Appendix 3. PICF (Patient) – Patch Adhesion Study .. 135
Appendix 4. PICF (Volunteer) – Patch Adhesion Study 135
Appendix 5. CRF (Assessment) – Patch Adhesion Study 135
Appendix 6. CRF (Patient) – Patch Adhesion Study ... 135
Appendix 7. CRF (Volunteer) – Patch Adhesion Study 135
Appendix 8. MHS HREC approval 1909A – Clinical Study 135
Appendix 9. GU HREC approval PHM/16/13/HREC – Clinical Study 135
Appendix 10. PICF – Clinical Study ... 135
Appendix 11. CRF – Clinical Study ... 135
List of Publications, Conferences and Grants

Publications

Conferences

Queensland Translating Research into Practice (TRIP) symposium, 25 July, Brisbane, Australia.

Grants

