DO IN-LINE DANCE, PROGRESSIVELY LOADED SQUATS AND FOOT STOMPING AFFECT THE PARAMETERS OF FRACTURE RISK IN POSTMENOPAUSAL WOMEN?

by
Catherine Mary Young, B Phty, M Sports Physiotherapy
School of Physiotherapy and Exercise Science, Faculty of Health, Griffith University

Statement of Originality:
This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

Signed
Removal Notice

Figure 3 from Chapter 2 has been removed from the digital version of this thesis for copyright reasons.
TABLE OF CONTENTS

Chapter 0ne: Introduction 7
 1.1 Hip Fracture in Postmenopausal Australian Women 7
 1.2 Primary aim 8
 Secondary aims 8
 1.3 Summary 8
 1.4 Hypotheses 9

Chapter Two: Background 10
 2.1 Osteoporosis 10
 2.2 Hip Fracture Risk 12
 2.2.1 Hip Fracture Risk Quantified 12
 2.2.2 Fall Risk 13
 2.3 Bone Mass 18
 2.3.1 The Natural History of the Skeleton 18
 2.4 Bone Strength 19
 2.4.1 Bone mass 19
 2.4.2 Geometry 20
 2.4.3 Microarchitecture 21
 2.5 Remodelling and Modelling 21
 2.5.1 Mechanical loading and adaptation in bone 22
 2.5.2 Mechanotransduction 24
 2.6 Parameters of load - effects in normal bone 25
 2.6.1 Load Magnitude 26
 2.6.2 Duration 27
 2.6.3 Cycle number 27
 2.6.4 Frequency 27
 2.6.5 Rate 28
 2.6.6 Gradient 28
 2.6.7 Type 29
 2.6.8 Summary of effective strain protocols and rationale for study activity (foot stomps) 29
 2.7 Findings of exercise trials in human bone 30
 2.7.1 Exercise effects in older women with normal bone mass 30
 2.7.2 Exercise effects in women with low bone mass 30
 2.8 The Osteogenic Index for designing exercise intervention protocols 32
 2.9 Bone Measurement 34
 2.9.1 Quantitative Ultrasound (QUS) 34
 2.9.2 Dual-energy X-ray Absorptiometry (DXA) 35
 2.10 Summary 36

Chapter 3 Materials and Methods 37
 3.1 Study Design 37
 3.2 Ethics 37
 3.3 Study description 37
 3.3.1 Participants 38
 3.4 Intervention 39
3.4.1 Compliance 39
3.4.2 Calcium Supplementation 39
3.4.3 Line Dance Class 40
3.4.4 Progressively Loaded Squats 40
3.4.5 Foot Stomps 41

3.5 Measurements 42
3.5.1 Behavioral Characteristics and Health History 42
3.5.2 Physical Measures 43
3.5.3 Quantitative Ultrasound 43
3.5.4 Dual-energy X-ray Absorptiometry (DXA) 44
3.5.5 Muscle Measures 44
3.5.6 Balance Measures 45
3.5.7 Step Velocity Measurement 46

3.6 Stamp-out Osteoporosis Study Device (SOSD) short and long term precision 48
3.6.1 Validation of instrumentation 49

3.7 Primary Study Testing Schedule 49

3.8 Statistical methods 50
3.8.1 Descriptive Analyses 50
3.8.2 Intervention effects 51

Chapter 4 Results 52
4.1 Statistical Power 52
4.2 Participant Characteristics 52
4.3 Normality of distributions between groups 53
4.3.1 Relationships between participant age, HFR, BUA, and PF BMD 54

4.4 Outcome Measures 54
4.4.1 Hip Fracture Risk 57
4.4.2 Broadband Ultrasound Attenuation 58
4.4.3 Proximal femur and lumbar spine bone mineral density (BMD) 58
4.4.4 Squats 60
4.4.5 Balance 62
4.4.6 Parameters of step velocity 63
4.4.7 Compliance findings 64

4.5 SOSD validation findings 64
4.5.1 Descriptive statistics 64
4.5.2 Device reliability 65

Chapter 5 Discussion 66
5.1 Hip Fracture Risk (HFR) 66
5.1.1 Bone mass measures 67
5.2 Fall risk 68
5.2.1 Functional squat capacity 68
5.2.2 Balance 69
5.2.3 Forward and lateral step velocity 70
5.3 Future research questions 71
5.4 Conclusions 72
LIST OF FIGURES

Figure 1 The risk for hip fracture ...12
Figure 2 Natural history of the human skeleton; adapted from Mundy, 200219
Figure 3 Comparison of engineer designed load bearing structures and trabeculae …..23
Table 1: Parameters of load, definitions and units ..26
Equation 1: Osteogenic potential = ln(N+1) ..32
Figure 4 The saturation response in bone that occurs with increasing stim. reps32
Equation 2: Recovery (percentage) = 100 (1 - e^{-t/\tau})32
Figure 5 Bone response to loading is greater with longer rest periods between bouts ...33
Equation 3: OI = x (body weight) * ln (N+1) + x * ln (N+1) * (1-e^{-10hr/6hr})33
Table 2 Osteogenic Indices for SOS exercise interventions for a 64Kg subject34
Table 3 Physical differences in measurement parameters of Quantitative Ultrasound ..34
Table 4 SOS intervention activities ..37
Figure 6 LabVIEW front panel ...48
Table 5 SOS Test Schedule ..50
Table 6 (a) Characteristics of recruits and (b) Participants on completion of study.52
Table 7 Baseline participant descriptive and dependent variables53
Figure 7 Relationship of age to (a) HFR, (b) BUA, (c) PF BMD, respectively55
Figure 7 Relationship of PF BMD to (d) HFR and (e) BUA. BUA to (f) HFR55
Table 8 Mean change in the SOS main outcome measures, per Group56
Figure 8 HFR score of all study participants (a) baseline, and (b) final57
Figure 9 Six and twelve month BUA change ...58
Figure 10 Twelve mo actual BUA (dB/MHz) change according to stomp compliance.58
Figure 11(a) 12 month change in PF BMD ...59
Figure 11(b) Twelve month LS BMD change ...59
Figure 13 Relationship of PF BMD change to stomps compliance60
Figure 14 Twelve month change in the number of loaded squats60
Figure 15 Twelve mo change in squats performance according to squats compliance ..61
Figure 16 Twelve month change in single leg stance ..62
Figure 17 Twelve month change in forward step velocity63
Figure 18 Twelve month change in lateral step velocity64
Figure 19 The age, height & weight of participants & instrument validation cohort65
Figure 20 (a) Foot stomps VGRF (b) Heel Drops VGRF73
Acknowledgements

The author wishes to acknowledge the expertise, and the firm yet friendly guidance provided to her by her principal supervisor Dr Belinda Beck.

Belinda, your continuous encouragement smoothed the path, maintained the perspective, and made this particular journey a very pleasant one. Thank you.
Abstract

Introduction: The incidence of hip fracture is increasing and the associated costs to individuals and the community needs to be vigorously addressed. This study was a randomized controlled intervention designed to examine the effects of a simple-to-do, easy-to-implement exercise programme on the elements of hip fracture risk which are known to be amenable to exercise therapy.

Methods: Forty-five volunteers were randomly assigned to one of three groups. All groups attended one line dance class per week. Two groups additionally performed progressively loaded squats five times a week. One group also performed four foot stomps twice daily five times per week. Hip fracture risk (HFR), broadband ultrasound attenuation (BUA), proximal femoral (PF) and lumbar spine (LS) bone mineral density (BMD), squats number, and balance variables were measured.

Results: There were no changes in HFR, BUA, PF or LS BMD, however, a strong positive stomps compliance effect was noted for BUA ($r = 0.73$, $p = 0.003$) and for PF BMD ($r = 0.79$, $p = 0.002$). Squats number increased in all participants, especially in those performing all three activities ($p = 0.001$). Single Leg Stance (SLS) times increased ($p < 0.01$), and Timed Up and Go (TUG) times decreased ($p < 0.01$) in all participants who complied with the protocol of squatting and stomping. Forward and lateral step velocities did not change.

Conclusions: Our novel intervention conferred positive benefits on the skeletons of independent living, postmenopausal women. Other indices of fall and fracture risk, including muscle strength and balance, improved in all participants suggesting a beneficial effect of line dancing on these factors.