Polarisation and Alignment Studies in Electron Scattering From Rubidium

by

William Edward Guinea
B. Sc. (Hons.) Griffith University

A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

Science, Environment, Engineering and Technology
School of Biomolecular and Physical Sciences
Griffith University
December, 2008
“Deep in the human unconsciousness is a pervasive need for a logical universe that makes sense. But the real universe is always one step beyond logic.”

Paul 'Muad Dib' Atreides, from Dune by Frank Herbert
This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself.

.......................................

William Edward Guinea
Abstract

Measurements have been made of the A_2 spin asymmetry in the scattering of polarised electrons from rubidium atoms. Results have been taken at an incident energy of 15, 20, 30, 50 and 80eV for elastic scattering, and at 15, 20, 30 and 50eV for 5S to 5P excitation where the fine structure has not been resolved. The measurements covered the angular range 30° to 110°. Results were taken using a crossed beam type experiment, with a hemispherical electrostatic detector. Polarised electrons were provided by a conventional gallium arsenide spin-polarised electron source. The R-matrix and relativistic distorted wave calculations available demonstrate good agreement with the experimental results, though there are some clear discrepancies between the magnitudes and positions of the extrema as predicted by theory. These A_2 results follow on from those taken by Went (2003).

A study of the autoionisation resonances of rubidium has also been undertaken. This consisted of first measuring the angular variation of the autoionisation resonances in the angular range 30° to 130°, at an incident energy of 1keV. A crossed beam method was also used for these results, though electrons were provided by a conventional electron gun. Significant relative angular variation between sets of autoionisation resonances was observed. The results taken represent the first experimentally determined values of the alignment parameter, A_{20} and R_0, the isotropic distribution ratio for the leading autoionisation doublet of rubidium. The experimentally determined values of A_{20} and R_0 were not inconsistent with the theoretical values available for comparison.

Finally an attempt was made to measure a circular dichroism in the angular distribution of autoionised electrons due to stepwise laser/electron impact excitation (CPDAD). The experimental detection of such a circular dichroism would be the very first of its kind. Such a measurement would also help validate the theoretical approach that predicted its existence. Preliminary investigation requires identification of an autoionisation resonance that is enhanced with the stepwise excitation procedure. A crossed beam experiment identical to the procedure immediately above was undertaken using a conventional electron gun. Laser light resonant with the D2 line of
rubidium was provided by a titanium-sapphire laser, while a diode laser was used to repump the dark state. Measurements were taken at incident energies of 250, 450, 700 and 1000eV at ejected electron angles of 75°, 75°, 90° and 90° respectively. No enhancement was visible with the stepwise process for any of the observed autoionisation resonances, so it was not possible to study CPDAD.
Acknowledgements

It is difficult to know where to start with thanking all those who have helped over the past four and half years, simply because there have been so many of you who have helped me in so many different ways.

Firstly, I would like to thank Professor Birgit Lohmann, who both formally and informally has been my principal supervisor throughout the course of my PhD program. I would like to thank Professor Lohmann for all of her help, encouragement and support that she has shown consistently over these past nearly five years. In addition to this, I am very grateful to Professor Lohmann for the understanding she has shown during this difficult period of my life.

I would also like to thank my associate supervisors, Professor William MacGillivray and Doctor Robert Sang. I would like to thank Professor MacGillivray for his help and support during my PhD program. I mention particularly Doctor Robert Sang, who has been my principal supervisor for the past year and a half. I am especially grateful to Doctor Sang for taking on the burden of my supervision in a project not originally his own at a time when I have been at my most intractable.

For his friendship and help with my experimental work, I would like to thank Dr Mark Stevenson.

Without the support of the technical staff of the electrical and mechanical workshop, I would not have got far with experimental work. To Steve Beams, Ken Parkyn and Steve Barrett of the electronics workshop, I thank you for your patience and understanding, especially in the face of apparently ridiculous and impossible electrical issues that hindered my progress from time to time. To Mal Kelson our laser lab mechanical assistant, Bruce Stevens and all members of the mechanical workshop I thank you for your time and patience in bringing my ideas for equipment to a reality and also for helping me with those miscellaneous nuts, bolts, screws and macor bits and pieces that I manage to lose or destroy at the most inconvenient of times.
I would also like to thank my fellow students of the laser atomic physics lab, both past and present that I have shared my time with. Special thanks to Dr Michael Went for bequeathing me a working set of apparatus and his help in overcoming difficulties. To Dr Jonathan Ashmore, Dr Danielle Atkins, Mark Baker, Adam Palmer, Kristen Matherson, Josh Beardmore, Rohan Glover and Dane Laban, I thank you all for making the lab an enjoyable and interesting place to work, even when I hated the place. Your friendship and support have helped me get through the most difficult of times.

I would like to thank my family. I thank my parents Patrick and Julie Guinea I am grateful for there constant love and support before, during and after my PhD work. I would like to thank my brothers, Ted and Patrick Guinea for being able to shift even my grumpiest moods, and for trying to cheat at monopoly.

Last, but certainly not least, I would like to thank my darling wife Krisha. She has pressed me in the past for what I will write here, but she will have to read this to find out. I have no way to thank you for all your love and support than to wish to return it to you for as long as I live.
Table of Contents

Chapter One: Introduction ... 1

1.0 Thesis Synopsis .. 1

1.1 Electron-Atom Collisions: Background 2

1.2 Spin Asymmetry Measurements: Relativistic (Spin) Effects in Electron-Atom Collisions .. 3
 1.2.0 Introduction .. 3
 1.2.1 Mott Scattering (High Energy Sherman Function Experiments) ... 6
 1.2.2 Low Energy Sherman Function Experiments 7
 1.2.3 Later Experiments in Relativistic Effects in Electron-Atom Collisions ... 9

1.3 Autoionisation Experiments .. 14

1.4 Reviews of Experimental Apparatus .. 21
 1.4.1 Sources of Polarised Electrons ... 21
 1.4.2. Review of Relativistic Experimental Apparatus 24
 1.4.3. Review of Autoionisation Apparatus 27

Chapter Two: Theory ... 30

2.0 Introduction .. 30

2.1 Introductory Scattering Theory ... 30

2.2 Description of Polarised Electron Beams 37
 2.2.1 The Dirac Equation .. 41

2.3 Electron Spin in Atomic Scattering .. 43
 2.3.1. Spin-Orbit Effect .. 43
 2.3.2 Exchange .. 48
 2.3.3. Fine Structure Effect .. 53
 2.3.4. Heavy Atoms: Extension to More Than One Predominate Spin Effect ... 56

2.3 Spin Asymmetry Measurements: Theoretical Calculations of A2 .. 57
 2.3.1 R-Matrix with Pseudo States (RMPS) 57
 2.3.2 Relativistic Distorted Wave Approximation (RDW) 58

2.4 Autoionisation Measurements .. 59
 2.4.0 Introduction ... 59
 2.4.1 Fano's Perturbation Theory for an Isolated Autoionisation Resonance .. 60
 2.4.2. Expression of Autoionisation Resonances in K-Matrix Theory .. 64
Chapter Three: Experimental Apparatus and Procedures

3.0 Overview

3.1 Vacuum system

3.2 Source Chamber

3.2.0 Overview

3.2.1 The GaAs Source

3.2.1.1 Background and Properties

3.2.1.2 GaAs Etching

3.2.1.3 Description of Other Source Equipment

3.2.1.4 Activation

3.2.1.5 Running Characteristics of the GaAs Source

3.2.1.6 Running Characteristics of the GaAs Source

3.3 Electron Optics and Electron Gun

3.3.0 General Considerations

3.3.1 Description of the Electron Optics

3.3.1.1 Acceleration Stage

3.3.1.2 Transport Stage

3.3.1.3 Deceleration Stage

3.3.2 Electron Optics Components

3.3.2.1 90° Deflector

3.3.2.2 Calbick Lens

3.3.2.3 Electrostatic Lenses

3.3.2.4 Apertures

3.3.3 Electron Gun

3.3.4 Power Supplies and Cabling

3.4 Scattering Chamber and Differential Pumping Stage

3.4.1 Differential Pumping Stage

3.4.2 Scattering Chamber

3.4.2.0 Overview

3.4.2.1 Turntables

3.4.2.2 180° Electrostatic Analyser

3.4.2.3 Faraday Cups

3.4.2.4 Channeltron

3.4.2.5 Rubidium Oven

3.4.3 Electric and Magnetic Shielding

3.4.3.0 Introduction

3.4.3.1 Hipernom Alloy

3.4.3.2 Helmholtz Coils

3.4.3.3 Effect of Magnetic Fields on Electrons and Electron Spin

3.4.3.4 Faraday Cages

3.5 Determining the Beam Polarisation

3.5.0 Overview

3.5.1 Mott Scattering

3.5.1.0 Mott Scattering: The Background

3.5.1.1 Problems with Mott Scattering

3.5.1.2 Description of the Mott Detector
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.2 Sherman Function from Xenon</td>
<td>115</td>
</tr>
<tr>
<td>3.6 Laser System</td>
<td>116</td>
</tr>
<tr>
<td>3.6.0 Overview</td>
<td>116</td>
</tr>
<tr>
<td>3.6.1 Titanium-Sapphire Laser</td>
<td>117</td>
</tr>
<tr>
<td>3.6.2 Infrared Diode Laser</td>
<td>118</td>
</tr>
<tr>
<td>3.7 Data Collection and Control Apparatus</td>
<td>118</td>
</tr>
<tr>
<td>3.7.1 Data Collection Control</td>
<td>118</td>
</tr>
<tr>
<td>3.7.2 Data Collection Apparatus</td>
<td>120</td>
</tr>
<tr>
<td>3.8. Experimental Calibration</td>
<td>122</td>
</tr>
<tr>
<td>3.8.1 Angular Calibration</td>
<td>122</td>
</tr>
<tr>
<td>3.8.2 Energy Calibration</td>
<td>122</td>
</tr>
<tr>
<td>3.8.3 Laser Considerations</td>
<td>123</td>
</tr>
<tr>
<td>3.9. Measurement Procedures</td>
<td>125</td>
</tr>
<tr>
<td>3.9.1 Spin Asymmetry Measurements</td>
<td>125</td>
</tr>
<tr>
<td>3.9.2 Autoionisation Measurements</td>
<td>126</td>
</tr>
<tr>
<td>3.10 Failure of the Spin-Polarised Source</td>
<td>127</td>
</tr>
<tr>
<td>Chapter Four: Results and Discussion</td>
<td>129</td>
</tr>
<tr>
<td>4.0 Overview</td>
<td>129</td>
</tr>
<tr>
<td>4.1. The A2 Asymmetry for Elastic and Inelastic Scattering from Rubidium</td>
<td>129</td>
</tr>
<tr>
<td>4.1.0 Introduction</td>
<td>129</td>
</tr>
<tr>
<td>4.1.1 Results and Discussion of the A2 Spin Asymmetry</td>
<td>130</td>
</tr>
<tr>
<td>4.2 The Angular Distribution of Autoionised Electrons from Rubidium and Enhancement by Stepwise Excitation Processes</td>
<td>146</td>
</tr>
<tr>
<td>4.2.1 The Angular Distribution of Autoionised Electrons from Rubidium Excited by Electron Impact</td>
<td>146</td>
</tr>
<tr>
<td>4.2.1.0 Introduction</td>
<td>146</td>
</tr>
<tr>
<td>4.2.1.1 Results and Discussion</td>
<td>148</td>
</tr>
<tr>
<td>4.2.2 Enhancement of Autoionising Resonances by Stepwise Laser/Electron Impact Excitation</td>
<td>170</td>
</tr>
<tr>
<td>4.2.2.0 Introduction</td>
<td>170</td>
</tr>
<tr>
<td>4.2.2.1 Results and Discussion</td>
<td>170</td>
</tr>
</tbody>
</table>
Chapter Five: Conclusions and Future Directions 179

Appendix A: Tables of Source Activation Parameters 181
 A2. Maximum Activation Temperature Tables 183

Appendix B: Effective Sherman Function for the Gold Foils
 Used in this Experiment ... 185

Appendix C: Elastic Cross Sections Used for Angular
 Calibration ... 186

Appendix D: Differential Cross Sections Associated with the
 A2 Asymmetry Measurements .. 188

Appendix E: Tables of Published A2 Data for Electron
 Scattering from Rubidium (Compiled from Guinea et al (2005))
 .. 193

Appendix F: Calculation of Errors For the Asymmetry
 Measurements .. 198

References .. 199
List of Figures

Figure 1.1. Summary of experimental and theoretical work on alignment in the leading autoionisation doublet of sodium...18

Figure 1.2. GaAs spin polarised source as used by McClelland, Kelley and Celotta (1989)..23

Figure 1.3. Mott scattering apparatus as used by Jost and Kessler (1966)........25

Figure 1.4. Triple scattering experiment as used by Wübker, Möllenkamp and Kessler (1982)..25

Figure 1.5. Apparatus used by Baum et al (2002) as used for the determination of spin asymmetries from caesium...26

Figure 1.6. Trapped electron method of Hahn and Nygaard (1971)................27

Figure 1.7. Autoionisation apparatus as used by Feuerstein, Grum-Grzhimailo and Melhorn (1998)..29

Figure 1.8. Apparatus used for stepwise excitation from sodium...............29

Figure 2.1. Schematic illustrating an atomic collision..31

Figure 2.2. The possible transitions to the 2P1/2 level from the 2S1/2 ground state. 55

Figure 3.1. Overview of experimental apparatus...70

Figure 3.2. Overview of the laser system...71

Figure 3.3. Laser system, mounted on top of the scattering chamber, used to deliver laser light to the interaction region...72

Figure 3.4. Relative orientation of the 90° deflector, caesium dispensers and GaAs crystal mount...82

Figure 3.5. Calibration of the LCR..83

Figure 3.6. Dimensions of the electron optics used in this work....................88

Figure 3.7. Dimensions of the 90° deflector..92

Figure 3.8. Demonstration of electron beam collimation via apertures........94

Figure 3.9. Dimensions and schematic of the electron gun.............................96

Figure 3.10. Photo of the inside of the scattering chamber............................99

Figure 3.11. Dimensions of the hemispherical analyser.................................102

Figure 3.12. Relative orientation of the electron spin angular momentum and the earth's magnetic field...107

Figure 3.13. Illustration of Mott scattering...113

Figure 3.14. Flowchart demonstrating the data collection process.................119
Figure 3.15. Pickoff circuit used in data collection

Figure 3.16. Energy loss spectrum for electron scattering from rubidium

Figure 4.1. A2 spin asymmetry for elastic scattering from rubidium at 15eV

Figure 4.2. A2 spin asymmetry for 5S to 5P impact excitation at 15eV

Figure 4.3. A2 spin asymmetry for elastic scattering from rubidium at 15eV

Figure 4.4. A2 spin asymmetry for 5S to 5P impact excitation at 20eV

Figure 4.5. A2 spin asymmetry for elastic from rubidium at 30eV

Figure 4.6. A2 spin asymmetry for 5S to 5P impact excitation at 30eV

Figure 4.7. A2 spin asymmetry for elastic scattering from rubidium at 50eV

Figure 4.8. A2 spin asymmetry for 5S to 5P impact excitation at 50eV

Figure 4.9. A2 spin asymmetry for elastic scattering from rubidium at 80eV

Figure 4.10. Autoionisation spectrum of rubidium, for electrons ejected at 30°

Figure 4.11. Autoionisation spectrum of rubidium, for electrons ejected at 40°

Figure 4.12. Autoionisation spectrum of rubidium, for electrons ejected at 50°

Figure 4.13. Autoionisation spectrum of rubidium, for electrons ejected at 60°

Figure 4.14. Autoionisation spectrum of rubidium, for electrons ejected at 70°

Figure 4.15. Autoionisation spectrum of rubidium, for electrons ejected at 75°

Figure 4.16. Autoionisation spectrum of rubidium, for electrons ejected at 80°

Figure 4.17. Autoionisation spectrum of rubidium, for electrons ejected at 85°

Figure 4.18. Autoionisation spectrum of rubidium, for electrons ejected at 90°

Figure 4.19. Autoionisation spectrum of rubidium, for electrons ejected at 100°

Figure 4.20. Autoionisation spectrum of rubidium, for electrons ejected at 110°

Figure 4.21. Autoionisation spectrum of rubidium, for electrons ejected at 120°

Figure 4.22. Autoionisation spectrum of rubidium, for electrons ejected at 130°

Figure 4.23. Ratios comparing all other peaks to peak 2

Figure 4.24. Fit of equation 1.4. to the peak 1: peak 2 ratio in order to determine A20 and R0

Figure 4.25. Same as figure 4.24, but with the ratio peak 1: peak 2 determined by a Gaussian fit to those particular structures only

Figure 4.26. Comparison of the stepwise and electron only impact excitation of the rubidium autoionisation resonances, at 250eV

Figure 4.27. Comparison of the stepwise and electron impact excitation only of the rubidium autoionisation resonances, at 450eV

Figure 4.28. Comparison of the stepwise and electron impact excitation only of the
rubidium autoionisation resonances, at 700eV..174

Figure 4.29. Comparison of the stepwise and electron impact excitation only of the rubidium autoionisation resonances, at 1000eV..175

Figure C1. Xenon elastic DCS at 60eV incident energy..186

Figure C2. Argon elastic DCS at 200eV incident energy..187

Figure D1. DCS for elastic scattering at 15eV incident energy..............................188

Figure D2. DCS for 5S to 5P excitation at 15eV incident energy............................188

Figure D3. DCS for elastic scattering at 20eV incident energy..............................189

Figure D4. DCS for 5S to 5P excitation at 20eV incident energy............................189

Figure D5. DCS for elastic scattering at 30eV incident energy..............................190

Figure D6. DCS for 5S to 5P excitation at 30eV incident energy............................190

Figure D7. DCS for elastic scattering at 50eV incident energy..............................191

Figure D8. DCS for 5S to 5P excitation at 50eV incident energy............................191

Figure D9. DCS for elastic scattering at 80eV incident energy..............................192
List of Tables

Table 1.1. Summary of experimental work on low energy electron polarisation from elastic scattering from mercury. ... 9
Table 1.2. Summary of the polarisation of electrons elastically scattered from xenon. 9
Table 1.3. Summary of some of the results for the asymmetry function for inelastic scattering of polarised electrons... 11
Table 1.4. Asymmetry measurements for the elastic scattering of polarised electrons from a variety of targets ... 11
Table 2.1. Scattering amplitudes and cross sections in terms of the direct and exchange cross sections for scattering from atoms where the spin-orbit effect is negligible, and both the target and projectile beams are totally polarised.............. 49
Table 2.2. Generalised processes for different atomic and electron spin projections in the excitation of an S to P state .. 55
Table 3.1. Calculated energy resolutions of the analyser used in this work 103
Table 3.2. Magnetic flux density at the interaction region with the Helmholtz coils switched on and switched off ... 106
Table 4.1. Largest observed asymmetries at 15, 20, 30, 50 and 80eV incident energies, for both elastic and inelastic scattering .. 140
Table 4.2. Position and percentage size of the peaks observed in measurements of the A2 asymmetry, for elastic scattering .. 141
Table 4.3. Position and percentage size of the peaks observed in measurements of the A2 asymmetry, for 5S to 5P excitation ... 141
Table 4.4. Energies of the peak structures observed in the autoionisation spectrum of rubidium, with constituent autoionisation lines from Pejčev et al (1977a) 164
Table A1.1. Activation parameters for the first GaAs crystal 181
Table A1.2. Activation parameters for the second GaAs crystal, before source failure ... 181
Table A1.3. Activation parameters for the second crystal, after source failure ... 181
Table A1.4. Activation parameters for the third crystal 182
Table A1.5. Activation parameters for the fourth crystal 182
Table A1.6. Activation parameters for the fifth crystal 182
Table A1.7. Activation parameters for the sixth crystal 182
Table A1.8. Activation parameters for the seventh crystal 182
Table A1.9. Activation parameters for the eighth and final crystal of this work……183
Table A2.1. Maximum temperature table, for the first crystal..............................183
Table A2.2. Maximum temperature table, for the second crystal, before source failure
...183
Table A2.3. Maximum temperature table, for the second crystal of this work, after
source failure..183
Table A2.4. Maximum temperature table, for the third crystal............................183
Table A2.5. Maximum temperature table, for the fourth crystal............................183
Table A2.6. Maximum temperature table, for the fifth crystal.............................184
Table A2.7. Maximum temperature table, for the sixth crystal..............................184
Table A2.8. Maximum temperature table, for the seventh crystal.........................184
Table A2.9. Maximum temperature table, for the eighth and final crystal of this work
..184
Table B1. Effective Sherman functions for the gold foils used to help determine the
electron beam polarisation via Mott scattering..185
Table E1. Asymmetry values for elastic scattering at 15eV......................................193
Table E2. Asymmetry values for elastic scattering at 20eV......................................193
Table E3. Asymmetry values for elastic scattering at 30eV......................................194
Table E4. Asymmetry values for elastic scattering at 50eV......................................194
Table E5. Asymmetry values for elastic scattering at 80eV......................................195
Table E6. Asymmetry values for 5S to 5P excitation at 15eV..................................195
Table E7. Asymmetry values for 5S to 5P excitation at 20eV..................................196
Table E8. Asymmetry values for 5S to 5P excitation at 30eV..................................196
Table E9. Asymmetry values for 5S to 5P excitation at 50eV..................................197